viernes, 21 de octubre de 2011

HISTORIA DE LA CIENCIA

INTRODUCCION

Con este trabajo no pretendemos hacer una descripción acabada de lo que es la ciencia, sino  más bien nuestro propósito es presentar algunos conceptos fundamentales para  tratar de entender este proceso intelectual que es el método empleado en las más diversas ciencias y aplicarlo en la medida de lo posible y aconsejable a su vida diaria. La ciencia es una actividad rigurosa, y no siempre es aconsejable utilizar su disciplina, pero el pensamiento racional tiene su lugar en nuestro mundo, y cuanto mejor entrenados estemos respecto de él, serán menos los errores que cometeremos al intentar resolver nuestros problemas.

Los investigadores han mostrado recientemente un creciente interés por las ideas de los estudiantes y de los profesores sobre la naturaleza de la ciencia y por cómo estas ideas difieren de la imagen dada por los historiadores, filósofos y sociólogos. Las ideas tácitas sobre cómo trabajan los científicos se basan en suposiciones implícitas sobre el lenguaje. Este ensayo explora estas suposiciones y sugiere que prestar atención a la naturaleza del lenguaje puede ser un aspecto productivo en la investigación futura y en los esfuerzos para reforzar el intelecto. En este sentido, una cuestión clave es la tensión existente entre la experiencia que se tiene sobre el lenguaje como un sistema interpretativo, utilizado activamente para generar una nueva comprensión de los hechos, y la que se tiene como un sistema de etiquetaje para transmitir información conocida.

Nuestro objetivo es tratar de contribuir a promover una reflexión sobre las finalidades de la enseñanza de las ciencias entre el profesorado, que debe incorporarse de manera consciente y explícita a un debate que habitualmente se le ha hurtado. Para facilitar esta reflexión y ser parte del concepto clave de relevancia de la ciencia escolar. El método científico es un proceso de razonamiento que intenta no solamente describir los hechos sino también explicarlos. La ciencia, considerada como la máxima expresión del conocimiento ya desde la Grecia antigua, basa toda su disciplina de investigación y desarrollo en el método científico.

En definitiva, la ciencia busca resolver problemas, y por lo general lo logra de forma eficiente, por lo que a cualquier persona interesada en resolver algún problema le puede servir el hecho de conocer algo acerca del método científico. Y la importancia de la ciencia y del esquema de pensamiento o método que ella define es fundamental en el mundo moderno, y no puede ignorarse. Pero el método científico no solamente se aplica a la ciencia pura, sino que su aplicación en la vida diaria, comercial, política, etc. provee de numerosos beneficios y evita numerosos problemas.

En la búsqueda del significado de la palabra Ciencia, ha sido debatido durante siglos y es que cada era o generación le ha dado la importancia o valor distinto a lo que dicha palabra busca representar concretamente. Para nosotros la ciencia es todo lo que implique la búsqueda de conocimientos a través de diferentes formas y métodos.  El simple hecho de razonar y preguntarnos a nosotros mismos el porqué de una cosa o la funcionalidad de algo, ya es generar ciencia. Al mismo tiempo cabe resaltar que la ciencia no solo incluye el hecho del cuestionamiento sino la comprobación de nuestras dudas a través de razonamientos científicos que sean capaces de ponerse en evidencia y que sean concretos y verídicos. Es obvio decir que la ciencia genera, sociedades pensantes y autocriticas esto produce evolución que a final de cuentas irán formando parte de dicha sociedad en todo tipo de aspectos tanto políticos, como económicos, sociales y porque no incluso culturales. Es por tanto que aplicando la representación que tiene la palabra "Ciencia", en la sociedad mexicana fácilmente podemos observar la carencia en todos estos aspectos antes mencionados, ya que el simple hecho de haber dejado a un lado la importancia del desarrollo de la ciencia en nuestro país impide que se pueda evolucionar y autoreflexionar acerca de nuestra presente situación.

El debate entre la ciencia y la religión es tan antiguo como lo son la ciencia y la religión misma. Pretendiendo poseer una revelación especial de Dios, la religión a menudo se ha remontado hacia alturas vertiginosas y en ocasiones, en su búsqueda de la verdad y un entendimiento de los misterios de la vida, se ha opuesto a la ciencia. La ciencia, pretendiendo ser humilde al tratar solamente con lo que se puede percibir por medio de los sentidos, también ha llegado a ser arrogante en algunas ocasiones, al negar todo papel o aún valor a la fe religiosa en la vida humana.


     
   
   
DESARROLLO TEMATICO

CIENCIA
 


El conocimiento científico adquirido a lo largo de la historia de la humanidad ha permitido al hombre realizar hazañas tan prodigiosas como, por ejemplo, llegar a la Luna, logros que apenas hace unas décadas antes habrían resultado posibles únicamente en la imaginación.

La ciencia (del latín scientia 'conocimiento') es el conjunto de conocimientos sistemáticamente estructurados obtenidos mediante la observación de patrones regulares, de razonamientos y de experimentación en ámbitos específicos, de los cuales se generan preguntas, se construyen hipótesis, se deducen principios y se elaboran leyes generales y esquemas metódicamente organizados.

La ciencia utiliza diferentes métodos y técnicas para la adquisición y organización de conocimientos sobre la estructura de un conjunto de hechos suficientemente objetivos y accesibles a varios observadores, además de basarse en un criterio de verdad y una corrección permanente. La aplicación de esos métodos y conocimientos conduce a la generación de más conocimiento objetivo en forma de predicciones concretas, cuantitativas y comprobables referidas a hechos observables pasados, presentes y futuros. Con frecuencia esas predicciones pueden formularse mediante razonamientos y estructurarse como reglas o leyes generales, que dan cuenta del comportamiento de un sistema y predicen cómo actuará dicho sistema en determinadas circunstancias.

La ciencia consolidada se constituye como tal, superada la fase de investigación, como resultado, cuando adquiere la consideración de saber válidamente justificado  por la comunidad científica correspondiente.

Descripción y clasificación de las ciencias



Mario Bunge (1983) clasificó la ciencia en función del enfoque que se da al conocimiento científico: por un lado, el estudio de los procesos naturales o sociales (el estudio de los hechos) y, por el otro, el estudio de procesos puramente lógicos y matemáticos (el estudio de las ideas), es decir, postuló la existencia de una ciencia factual (o ciencia fáctica) y una ciencia formal.

Las ciencias factuales se encargan de estudiar hechos auxiliándose de la observación y la experimentación. Por ejemplo, la física y la psicología son ciencias factuales porque se refieren a hechos que se supone ocurren en la realidad y, por consiguiente, tienen que apelar al examen de la evidencia empírica para comprobarlos. En conclusión, el objeto de estudio de la ciencia formal no son las cosas ni los procesos, sino las relaciones abstractas entre signos, es decir, se estudian ideas. Son ciencias formales la lógica y las matemáticas.

Disciplinas científicas

Ciencias formales

Estudian las formas válidas de inferencia: lógica-matemática. No tienen contenido concreto; es un contenido formal, en contraposición al resto de las ciencias fácticas o empíricas.

Ciencias naturales

Son aquellas disciplinas científicas que tienen por objeto el estudio de la naturaleza: astronomía, biología, física, geología, química, geografía física y otras.

Ciencias sociales

Son aquellas disciplinas que se ocupan de los aspectos del ser humano - cultura y sociedad- El método depende de cada disciplina particular: administración, antropología, ciencia política, demografía, economía, derecho, historia, psicología, sociología, geografía humana, trabajo social y otras.

La ciencia experimental se ocupa solamente del estudio del universo natural ya que, por definición, todo lo que puede ser detectado o medido forma parte de él. En su trabajo de investigación, los científicos se ajustan a un cierto método, el método científico, un proceso para la adquisición de conocimiento empírico. Para fines de comprensión, puede decirse que la llamada ciencia aplicada consiste en la aplicación del conocimiento científico teórico (la llamada ciencia básica o teórica) a las necesidades humanas y al desarrollo tecnológico. Es por eso que es muy común encontrar, como término, la expresión "ciencia y tecnología": dos aspectos inseparables, en la vida real, de una misma actividad.

Algunos descubrimientos científicos pueden resultar contrarios al sentido común. Ejemplos de esto son la teoría atómica o la mecánica cuántica, que desafían nociones comunes sobre la materia. Muchas concepciones intuitivas de la naturaleza han sido transformadas a partir de hallazgos científicos, como el movimiento de traslación de la Tierra alrededor del Sol o la teoría evolutiva de Charles Darwin.





Los términos modelo, hipótesis, ley y teoría tienen en la ciencia un significado muy distintos al que se les da en el lenguaje coloquial. Los científicos utilizan el término modelo para referirse a una descripción de algo, especialmente algo que pueda usarse para realizar predicciones que puedan ser sometidas a prueba por experimentación u observación. Una hipótesis es una afirmación que aún no ha sido bien respaldada o bien que aún no ha sido descartada. Una ley física o ley natural es una generalización científica basada en observaciones empíricas.

La palabra teoría es incomprendida particularmente por el común de la gente. El uso coloquial de la palabra teoría se refiere, equivocadamente, a ideas que aún no han sido demostradas firmemente o que no tienen un respaldo experimental. En contraposición, los científicos generalmente utilizan esta palabra para referirse a un cuerpo de leyes o principios a través de los cuales se realizan predicciones acerca de fenómenos específicos. Formalmente, una teoría es un sistema conceptual, general y explicativo, racional, empírico y suficientemente objetivo sobre hechos o sobre algún aspecto de la realidad.

.

Aplicaciones de la lógica y de las matemáticas en la ciencia

 La lógica y la matemática son esenciales para todas las ciencias porque siempre son exactas. La función más importante de ambas es la creación de sistemas formales de inferencia y la concreción en la expresión de modelos científicos. La observación y colección de medidas, así como la creación de hipótesis y la predicción, requieren a menudo modelos lógico-matemáticos y el uso extensivo del cálculo, y en la actualidad resulta especialmente relevante la creación de modelos numéricos, debido a las enormes posibilidades de cálculo que ofrecen los ordenadores.

Las ramas de la matemática más comúnmente empleadas en la ciencia incluyen el análisis matemático, el cálculo matemático y las estadísticas, aunque virtualmente toda rama de la matemática tiene aplicaciones en la ciencia, incluso en áreas "puras" como la teoría de números y la topología. El uso de la matemática es particularmente frecuente en física, y en menor medida en química, biología y algunas ciencias sociales.



Algunos pensadores ven a la matemática como una ciencia, considerando que la experimentación física no es esencial a la ciencia o que la demostración matemática equivale a la experimentación. Otros opinan lo contrario, ya que en matemática no se requiere evaluación experimental de las teorías e hipótesis. En cualquier caso, la utilidad de la matemática para describir el universo es un tema central de la filosofía de la matemática.

Filosofía de la ciencia

La efectividad de la ciencia como modo de adquisición de conocimiento ha constituido un notable campo de estudio para la filosofía. La filosofía de la ciencia intenta comprender el carácter y justificación del conocimiento científico y sus implicaciones éticas. Ha resultado particularmente difícil proveer una definición del método científico que pueda servir para distinguir en forma clara la ciencia de la no ciencia o de la pseudociencia.

La más bella y profunda emoción que nos es dado sentir es la sensación de lo místico. Ella es la que genera toda verdadera ciencia. El hombre que desconoce esa emoción, que es incapaz de maravillarse y sentir el encanto y el asombro, está prácticamente muerto. Saber que aquello que para nosotros es impenetrable realmente existe, que se manifiesta como la más alta sabiduría y la más radiante belleza, sobre la cual nuestras embotadas facultades sólo pueden comprender en sus formas más primitivas. Ese conocimiento, esa sensación, es la verdadera religión.

En la actualidad, la posición generalizada es la naturalista, frente al fundacionalismo predominante en toda la tradición. Tanto es así que incluso podría considerarse una moda filosófica, desdibujando el sentido originario del naturalismo.

 Las características básicas del naturalismo original son, como señaló Quine en La naturalización de la epistemología, una posición no fundacionalista y multidisciplinaria. Mientras que el objetivo tradicional de la filosofía de la ciencia ha sido el de justificar y legitimar el conocimiento científico, el objetivo posterior es el de entender cómo se da tal conocimiento científico, entendido como actividad y empresa humana, utilizando para ello todos los recursos pertinentes, es decir, todas las disciplinas relevantes: biología, psicología, antropología, sociología, etc., e incluso economía y tecnología.

Historia de la ciencia






La historia de la ciencia es el campo de la historia que estudia el desarrollo temporal de los conocimientos científicos y tecnológicos de las sociedades humanas. Este campo de la historia también estudia el impacto que la ciencia y la tecnología han tenido históricamente en la cultura, la economía y la política.

La ciencia es un cuerpo de conocimiento empírico y teórico, producido por una comunidad global de investigadores que hacen uso de técnicas específicas para observar y explicar los fenómenos de la naturaleza, bajo el nombre de método científico. La historia de la ciencia recurre al método histórico tanto de la historia intelectual como de la historia social.

Teorías y sociología

En la sociología de la ciencia, en particular, se han enfocado los caminos en los que los científicos trabajan, mirando estrechamente los caminos que "producen" y "construyen" el conocimiento científico. Desde los años 1960, una tendencia común en los estudios de la ciencia (el estudio de la sociología y la historia de la ciencia) han querido acentuar " el componente humano " dentro del conocimiento científico, y la opinión sobre qué datos científicos son evidentes, sin valor, y sin contexto.

Una de las causas principales de preocupación y controversia en la filosofía de la ciencia ha sido la de preguntarse sobre la naturaleza "del cambio de teoría" en la ciencia. Tres filósofos en particular, son los que representan los pilares principales de este debate:

v  Karl Popper, quien argumentó que el conocimiento científico es progresivo y acumulativo.
v  Thomas Kuhn, quien argumentó que el conocimiento científico se mueve gracias a la "Revolución científica" y no es necesariamente progresiva.
v  Paul Feyerabend, quien argumentó que el conocimiento científico no es acumulativo o progresivo, y que no puede haber problema de demarcación en términos de método entre la ciencia y cualquier otra forma de investigación.

Desde la publicación de Kuhn de "La estructura de las revoluciones científicas" en 1962, hubo un gran debate en la comunidad académica sobre el significado y la objetividad de la ciencia. A menudo, pero no siempre, un conflicto sobre "la verdad" de la ciencia ha hecho mella en la comunidad científica y en las ciencias sociales o humanidades (guerras de la ciencia).

Culturas primitivas

En tiempos prehistóricos, los consejos y los conocimientos fueron transmitidos de generación en generación por medio de la tradición oral. El desarrollo de la escritura permitió que los conocimientos pudieran ser guardados y comunicados a través de generaciones venideras mucho mayor fidelidad. Con la Revolución Neolítica y su desarrollo de la agricultura, que propició un exceso de alimentos, hizo factible la posibilidad del desarrollo para civilizaciones tempranas, porque podía ser dedicado más tiempo a otras tareas que a la supervivencia.

La ciencia en el Creciente fértil

A partir de sus principios en Sumeria (actualmente en Irak) alrededor del 3500 a. C., en Mesopotamia, los pueblos del norte comenzaron a intentar registrar la observación del mundo con datos cuantitativos y numéricos sumamente cuidados. Pero sus observaciones y medidas aparentemente fueron tomadas con otros propósitos más que la ley científica. Un caso concreto es el del Teorema de Pitágoras, que fue registrado, aparentemente en el siglo XVIII a. C

Los avances significativos en el Antiguo Egipto son referentes a la astronomía, a las matemáticas y a la medicina. Su geometría era una consecuencia necesaria de la topografía, con el fin de intentar conservar la disposición y la propiedad de las tierras de labranza, que fueron inundadas cada año por el Nilo. La regla del triángulo rectángulo y otras reglas básicas sirvieron para representar estructuras rectilíneas, el pilar principal de la arquitectura dintelada egipcia. Egipto era también el centro de la química y la investigación para la mayor parte del Mediterráneo.

Matemáticas en el Antiguo Egipto


Entre todas las ramas de la ciencia que desarrollaron, en la que más avanzaron fue en las matemáticas. En el papiro Rhind vemos cómo llegaron a dominar la suma, resta, multiplicación y división, sin necesidad de memorizar tablas de multiplicar, resuelven ecuaciones con una incógnita y solucionan problemas prácticos bastante complejos. El denominado Teorema de Pitágoras tiene su precedente en Egipto.

La geometría



La necesidad de volver a marcar los límites de los terrenos de cultivo al bajar el nivel del agua del Nilo, después de las inundaciones anuales, impulsó el desarrollo de la geometría y los instrumentos de medición para el cálculo de áreas, volúmenes e incluso del tiempo.

Unidades de longitud



La unidad de longitud más corriente fue el codo, que es la distancia entre el codo y el extremo del dedo medio de una persona. Durante la tercera dinastía, esta medida, fue la más sobresaliente por todos los tiempos.

Los escribas



Los escribas, funcionarios del antiguo Egipto, recibían lecciones de cálculo y escritura, eran personas instruidas y cultas. Registraban el nivel del río Nilo (nilómetros), la producción de las cosechas, su almacenamiento, realizaban censos de población y ganado, registros de importación y exportación, etc.

Arquitectura



Los arquitectos reales, con sus conocimientos de física y geometría, erigieron monumentales edificaciones y organizaron el trabajo de multitudinarios grupos de artistas, artesanos y trabajadores. El tallado, transporte desde las canteras de Asuán y colocación de pesados obeliscos monolíticos de granito o colosales estatuas, implica un alto nivel de conocimientos. La única de las siete maravillas del mundo que aún perdura, la pirámide de Jufu, es buen ejemplo del grado de perfeccionamiento alcanzado en las ciencias aplicadas.

La medicina



Los médicos, sunu "los hombres de los que sufren o están enfermos", se educaban en escuelas especiales las casas de la vida, como las de Sais y Heliópolis. La medicina era gratuita y estaba vinculada a los templos. Los médicos egipcios clasificaron las enfermedades en: las de causas manifiestas, como los traumatismos, y las de causas desconocidas, atribuidas a los dioses o a espíritus malignos.

Alquimia




La alquimia egipcia es conocida principalmente a través de los escritos de antiguos filósofos griegos, que a su vez han sobrevivido a menudo sólo en traducciones islámicas. Prácticamente no se ha conservado ningún documento egipcio original sobre la alquimia. Estos escritos, si existieron, probablemente se perdieron cuando el emperador Diocleciano ordenó la quema de libros alquímicos tras sofocar una revuelta en Alejandría (292), que había sido un centro de alquimia, y de ciencia en general.

No obstante, recientes expediciones arqueológicas han desenterrado evidencias de análisis químico durante los periodos Naqada. Por ejemplo, el proceso de curtir pieles animales ya se conocía en el VI milenio a. C., si bien posiblemente fuera descubierto por accidente.

Otras evidencias indican claramente que los primitivos alquimistas del antiguo Egipto habían inventado el mortero de cal ya en el 4000 a. C. y el vidrio en el 1500 a. C., y se fabricaban cosméticos, fayenza y también pez para la construcción naval. El papiro también había sido inventado en el 3000 a. C. Uno de los alquimistas egipcios más famosos era Marik Alu-Kurard. Lo llamaban sobre todo para fabricar piedras y fue el primero que propuso la idea de la piedra filosofal, lo que se relata en fragmentos de escritura encontrados en la tumba del rey Tutankamon.

Ciencia medieval

La expresión ciencia medieval se refiere a los descubrimientos en el campo de la filosofía natural que ocurrieron en el periodo de la Edad Media —el periodo intermedio, en una división esquemática de la Historia de Europa.

Europa Occidental entró en la Edad Media con grandes dificultades que minaron la producción intelectual del continente. Los tiempos eran confusos y se había perdido el acceso a los tratados científicos de la antigüedad clásica (en griego), manteniéndose sólo las compilaciones resumidas y hasta desvirtuadas, por las sucesivas traducciones que los romanos habían hecho al latín. Sin embargo, con el inicio de la llamada Revolución del siglo XII, se reavivó el interés por la investigación de la naturaleza. La ciencia que se desarrolló en ese periodo dorado de la filosofía escolástica daba énfasis a la lógica y abogaba por el empirismo, entendiendo la naturaleza como un sistema coherente de leyes que podrían ser explicadas por la razón.

Fue con esa visión con la que sabios medievales se lanzaron en busca de explicaciones para los fenómenos del universo y consiguieron importantes avances en áreas como la metodología científica y la física. Esos avances fueron repentinamente interrumpidos por la Peste negra y son virtualmente desconocidos por el público contemporáneo, en parte porque la mayoría de las teorías avanzadas del periodo medieval están hoy obsoletas, y en parte por el estereotipo de que la Edad Media fue una supuesta "Edad de las Tinieblas".

Historia de la ciencia en el Occidente Europeo


Se suele decir que los romanos eran un pueblo de orientación práctica. A pesar de estar maravillados con los descubrimientos del pasado griego, no llegaron a formar nuevas instituciones que buscasen específicamente entender el universo o el mundo natural. Los verdaderos centros de producción de conocimiento del Imperio romano se localizaban en los territorios orientales, de cultura griega. Habían sido fundados antes del dominio romano y ya no mantenían la misma fuerza creativa de periodos anteriores.

La clase rica del Imperio era bilingüe, no se sentía la necesidad de traducir los tratados científico-filosóficos producidos por la civilización griega. Sin embargo, era común encontrar compilaciones resumidas de las principales corrientes del pensamiento griego en latín. Estos resúmenes eran leídos y discutidos en los espacios públicos de la agitada vida social romana. Durante el proceso de desestructuración del Imperio romano de Occidente, el Occidente europeo fue perdiendo contacto con Oriente y el griego acabó por ser olvidado. De ese modo, Europa Occidental perdió el acceso a los tratados originales de los filósofos clásicos, quedándose sólo con las versiones truncadas de ese conocimiento que habían sido traducidas anteriormente. Es como si hoy en día perdiéramos casi todos los trabajos científicos y sólo nos quedásemos con textos de revistas destinadas al consumo popular.

Edad Media Antigua

El Imperio romano de Occidente, si bien estaba unido por el latín, aún englobaba un gran número de culturas diferentes que habían sido asimiladas de una manera incompleta por la cultura romana. Debilitado por las migraciones e invasiones de tribus bárbaras, por la desintegración política de Roma en el siglo V y aislado del resto del mundo por la expansión del Islam el siglo VII, el Occidente Europeo llegó a ser poco más que una colcha de retales de poblaciones rurales y pueblos seminómadas. La inestabilidad política y el declive de la vida urbana golpearon duramente la vida cultural del continente. La Iglesia Católica, como única institución que no se desintegró en ese proceso, mantuvo lo que quedó de fuerza intelectual, especialmente a través de la vida monástica.

El hombre instruido de esos primeros siglos era casi siempre un clérigo para quien el estudio de los conocimientos naturales era una pequeña parte de la erudición. Estos estudiosos vivían en una atmósfera que daba prioridad a la fe y tenían la mente más dirigida a la salvación de las almas que al cuestionamiento de detalles de la naturaleza. Además de eso, la vida casi siempre insegura y económicamente difícil de esa primera parte del periodo medieval mantenía al hombre volcado en las dificultades del día a día. De ese modo, las actividades científicas fueron prácticamente reducidas a las citas y comentarios de obras que hacían referencia a la antigüedad clásica; esos comentarios estaban a veces llenos de errores, ya que los textos usados como referencia, las obras que quedaron en latín, tenían informaciones truncadas y hasta tergiversadas.

A finales del siglo VIII, hubo una primera tentativa de resurgimiento de la cultura occidental. Carlomagno había conseguido reunir gran parte de Europa bajo su dominio. Para unificar y fortalecer su imperio, decidió ejecutar una reforma en la educación. El monje inglés Alcuino elaboró un proyecto de desarrollo escolar que buscó revivir el saber clásico estableciendo los programas de estudio a partir de las siete artes liberales: el Trivium, o enseñanza literaria (gramática, retórica y dialéctica) y el quadrivium, o enseñanza científica (aritmética, geometría, astronomía y música). A partir del año 787, se promulgaron decretos que recomendaban, en todo el imperio, la restauración de las antiguas escuelas y la fundación de otras nuevas. Institucionalmente, esas nuevas escuelas podían ser monacales, bajo la responsabilidad de los monasterios; catedralicias, junto a la sede de los obispados; y palatinas, junto a las cortes.

Esas medidas tendrían sus efectos más significativos sólo algunos siglos más tarde. La enseñanza de la dialéctica (o lógica) fue haciendo renacer el interés por la indagación especulativa; de esa semilla surgiría la filosofía cristiana de la Escolástica. Además de eso, en los siglos XII y XIII, muchas de las escuelas que habían sido estructuradas por Carlomagno, especialmente las escuelas catedralicias, pasaron a ser Universidades.

 Edad Media Clásica

Después de la contención de las últimas oleadas de invasiones extranjeras el siglo X, siguió una época de relativa tranquilidad en relación a las amenazas externas, que también coincidió con un periodo de condiciones climáticas más benignas. Europa Occidental pasa entonces por cambios sociales, políticos y económicos, que van a generar el llamado Renacimiento del siglo XII. Los avances tecnológicos posibilitan el cultivo de nuevas tierras y el aumento de la diversidad de los productos agrícolas, que sostienen una población que pasa a crecer rápidamente. El comercio está en franca expansión, ocurre el desarrollo de rutas entre los diversos pueblos que reducen las distancias, facilitando no sólo el comercio de bienes físicos, sino también el cambio de ideas y corrientes entre los países. Las ciudades también van abandonando su dependencia agraria, creciendo en torno a los castillos y monasterios. En ese ambiente receptivo, comienzan a abrirse nuevas escuelas a lo largo de todo el continente, incluso en ciudades y villas menores.

En el campo intelectual, los cambios son también fruto del contacto con el mundo oriental y árabe a través de las Cruzadas y del movimiento de Reconquista de la Península Ibérica. Por aquel entonces, el mundo islámico se encontraba bastante avanzado en términos intelectuales y científicos. Los autores árabes habían mantenido durante mucho tiempo un contacto regular con las obras clásicas griegas (Aristóteles, por ejemplo), habiendo hecho un trabajo de traducción que sería muy valioso para los pueblos occidentales, ya que por este medio volvieron a entrar en contacto con sus raíces eruditas "olvidadas". De hecho, ya sea en España (Toledo), ya sea en el sur de Italia, los traductores europeos van a producir un espolio considerable de traducciones que permitieron avances importantes en conocimientos como la astronomía, la matemática, la biología y la medicina, y que serían el caldo de cultivo de la evolución intelectual europea de los siglos posteriores.

Alrededor de 1150 se fundan las primeras universidades medievales – Bolonia (1088), París (1150) y Oxford (1167) — en 1500 ya serían más de setenta. Ése fue efectivamente el punto de partida para el modelo actual de universidad. Algunas de esas instituciones recibían de la Iglesia o de Reyes el título de Studium Generale; y eran consideradas los locales de enseñanza más prestigiosos de Europa, sus académicos eran animados a compartir documentos y dar cursos en otros institutos por todo el continente.

Tratándose no sólo de instituciones de enseñanza, las universidades medievales eran también locales de investigación y producción del saber, además de focos de vigorosos debates y muchas polémicas. Eso también se refleja en las crisis en que estuvieron envueltas estas instituciones y por las intervenciones que sufrieron del poder real y eclesiástico. La filosofía natural estudiada en las facultades de Arte de esas instituciones trataba del estudio objetivo de la naturaleza y del universo físico. Ése era un campo independiente y separado de la teología; entendido como un área de estudio esencial en sí misma, así como un fundamento para la obtención de otros saberes.

Otro factor importante que influyó en el florecimiento intelectual del periodo fue la actividad cultural de las nuevas órdenes mendicantes: especialmente los Dominicos y los Franciscanos. Al contrario de las órdenes monásticas, volcadas hacia la vida contemplativa en los monasterios, estas nuevas órdenes estaban dedicadas a la convivencia en el mundo laico y buscaban defender la fe cristiana por la predicación y por el uso de la razón. La integración de esas órdenes en las universidades medievales proporcionaba la infraestructura necesaria para la existencia de comunidades científicas y generaría muchos frutos para el estudio de la naturaleza, especialmente con la renombrada Escuela Franciscana de Oxford.

El influjo de los textos griegos, las órdenes mendicantes y la multiplicación de las universidades irían a actuar conjuntamente en ese nuevo mundo que se alimentaba del torbellino de las ciudades en crecimiento. En 1200 ya había traducciones latinas razonablemente precisas de los principales trabajos de los autores antiguos más cruciales para la filosofía: Aristóteles, Platón, Euclides, Ptolomeo, Arquímedes y Galeno. A esa altura, la filosofía natural, contenida en esos textos comenzó a ser trabajada y desarrollada por escolásticos notables como Robert Grosseteste, Roger Bacon, Alberto Magno y Duns Scoto, que traerían nuevas tendencias para un abordaje más concreto y empírico, representando un preludio del pensamiento moderno.

 Grosseteste, el fundador de la escuela Franciscana de Oxford, fue el primer escolástico en entender plenamente la visión aristotélica del doble camino para el pensamiento científico: generalizar de observaciones particulares a una ley universal; y después hacer el camino inverso: deducir de leyes universales a la previsión de situaciones particulares. Además de eso, afirmó que estos dos caminos deberían ser verificados —o invalidados— a través de experimentos que probaran sus principios. Grosseteste daba gran énfasis a la matemática como un medio de entender la naturaleza y su método de investigación contenía la base esencial de la ciencia experimental.

Roger Bacon, alumno de Grosseteste, da una especial atención a la importancia de la experimentación para aumentar el número de hechos conocidos acerca del mundo. Describe el método científico como un ciclo repetido de observación, hipótesis, experimentación y necesidad de verificación independiente. Bacon registraba la forma en que llevaba a cabo sus experimentos dando detalles precisos, a fin de que otros pudieran reproducir sus experimentos y probar los resultados —esa posibilidad de verificación independiente es parte fundamental del método científico contemporáneo.

Edad Media Tardía

La primera mitad del siglo XIV vio el trabajo científico de grandes pensadores. Inspirado en Duns Scoto, Guillermo de Ockham entendía que la filosofía sólo debía tratar de temas sobre los cuales ella pudiera obtener un conocimiento real. Sus estudios en lógica lo llevaron a defender el principio hoy llamado Navaja de Ockham: si hay varias explicaciones igualmente válidas para un hecho, entonces debemos escoger la más simple. Ello debería llevar a un declive en debates estériles y mover la filosofía natural en dirección a lo que hoy se considera ciencia.

En aquel tiempo, académicos como Jean Buridan y Nicolás Oresme comenzaron a cuestionar aspectos de la mecánica aristotélica. En particular, Buridan desarrolló la teoría del ímpetu, que explicaba el movimiento de proyectiles y fue el primer paso en dirección al concepto moderno de inercia. Buridan se anticipó a Isaac Newton cuando escribió:

...después de dejar el brazo del lanzador, el proyectil sería movido por un ímpetu suministrado por el lanzador y continuaría moviéndose siempre y cuando ese ímpetu permaneciese más fuerte que la resistencia. Ese movimiento sería de duración infinita en caso de que no fuera disminuido y corrompido por una fuerza contraria resistente a él, o por algo que desvíe al objeto a un movimiento contrario.

En esa misma época, los denominados Calculatores de Merton College, de Oxford, elaboraron el Teorema de la velocidad media. Usando un lenguaje simplificado, este teorema establece que un cuerpo en movimiento uniformemente acelerado recorre, en un determinado intervalo de tiempo, el mismo espacio que sería recorrido por un cuerpo que se desplazara con velocidad constante e igual a la velocidad media del primero. Más tarde, ese teorema sería la base de la "Ley de la caída de los cuerpos", de Galileo. Hoy sabemos que las principales propiedades cinemáticas del movimiento rectilíneo uniformemente variado, que aún se le atribuyen a Galileo por los textos de física, fueron descubiertas y probadas por esos académicos.

Nicolás Oresme, por su parte, demostró que las razones propuestas por la física aristotélica contra el movimiento del planeta Tierra no eran válidas e invocó el argumento de la simplicidad en favor de la teoría de que es la Tierra la que se mueve, y no los cuerpos celestes. En general, el argumento de Oresme a favor del movimiento terrestre es más explícito y más claro que el que fue dado siglos después por Copérnico. Entre otras proezas, Oresme fue el descubridor del cambio de dirección de la luz a través de la refracción atmosférica; aunque, hasta hoy, ese descubrimiento se le atribuye a Robert Hooke.

En 1348, la Peste Negra llevó este periodo de intenso desarrollo científico a un fin repentino. La plaga mató un tercio de la población europea. Durante casi un siglo, nuevos focos de la plaga y otros desastres causaron un continuo decrecimiento demográfico. Las áreas urbanas, generalmente el motor de las innovaciones intelectuales, fueron especialmente afectadas.

Renacimiento



Además de estancar el proceso de innovación, la peste negra fue uno de los factores que pusieron en jaque todo el modelo de sociedad que había encontrado su apogeo los siglos anteriores. El siglo XV presenció el inicio del florecimiento artístico y cultural del Renacimiento.

El redescubrimiento de textos antiguos se aceleró después de la Caída de Constantinopla, a mediados del siglo XV, cuando muchos eruditos bizantinos tuvieron que ir a buscar refugio en Occidente, especialmente en Italia. Este nuevo influjo alimentó el creciente interés de los académicos europeos por los textos clásicos de periodos anteriores al triunfo del cristianismo en la cultura europea. En el siglo XVI ya comienza a existir, paralelo al interés por la civilización clásica, un menosprecio por la Edad Media, que pasó a ser cada vez más asociada a expresiones como "barbarismo", "ignorancia", "oscuridad", "gótico", "noche de mil años" o "sombrío".

 El humanismo renacentista rompe con la visión teocéntrica y con la concepción filosófico-teológica medieval. Ahora, conceptos como la dignidad del ser humano pasan a estar en primer plano. Por otro lado, ese humanismo representa también una ruptura con la importancia que le venía siendo dada a las ciencias naturales desde el (re) descubrimiento de Aristóteles, en el siglo XII.

A pesar del florecimiento artístico, el periodo inicial del Renacimiento es generalmente visto como un momento de estancamiento en las ciencias. Hay poco desarrollo de disciplinas como la física y astronomía. El apego a los escritos antiguos enraízan aún más las visiones ptolemaica y aristotélica del universo. En contraste con la escolástica, que suponía un orden racional de la naturaleza en el cual podría penetrar el intelecto, el llamado naturalismo renacentista pasaba a ver el universo como una creación espiritual opaca a la racionalidad y que sólo podría ser comprendida por la experiencia directa. Al mismo tiempo, la filosofía perdió mucho de su rigor cuando las reglas de la lógica pasaron a considerarse como secundarias ante la intuición o la emoción.

Por otro lado, la invención de la imprenta, que ocurrió simultáneamente a la Caída de Constantinopla, tendría gran efecto en la sociedad europea. La difusión más fácil de la palabra escrita democratizó el aprendizaje y permitió la propagación más rápida de nuevas ideas. Entre esas ideas estaba el álgebra, que había sido introducida en Europa por Fibonacci en el siglo XIII, pero sólo se popularizó al ser divulgada en forma impresa. Estas transformaciones facilitaron el camino para la Revolución científica, pero eso sólo ocurriría después de haber llegado el movimiento renacentista al norte de Europa, con figuras como Copérnico, Francis Bacon y Descartes. Fueron estas figuras las que llevaron adelante los avances ensayados por los sabios de la Edad Media, pero estos personajes ya son descritos a menudo como pensadores pre-iluministas, en lugar de que sean vistos como parte del Renacimiento tardío.

Astronomía

Durante el siglo XV se produjo un crecimiento acelerado del comercio entre las naciones mediterráneas y se exploraron nuevas rutas comerciales hacia oriente y occidente. Estas últimas acarrearon el descubrimiento de América por los europeos. Este crecimiento en las necesidades de navegación impulsó el desarrollo de sistemas de orientación y navegación y con ello el replanteamiento de materias como la geografía, la astronomía, la cartografía, meteorología, y la tecnología para la creación de nuevos instrumentos de medición como compases y relojes.

Nicolás Copérnico retomó las ideas heliocentristas y propuso un sistema en el cual el sol se encuentra inmóvil en el centro del universo y a su alrededor giran los planetas en órbitas con movimiento perfecto, es decir, circular. Este sistema copernicano, sin embargo, adolecía de los mismos o más errores que el geocéntrico postulado por Ptolomeo: no explicaba el movimiento retrógrado de los planetas y erraba en la predicción de otros fenómenos celestes. Copérnico, por tanto, incluyó también en su sistema epiciclos para ajustar su teoría a las observaciones realizadas.

Tycho Brahe, gran observador del cielo, realizó las más precisas observaciones y mediciones astronómicas para su época, entre otras cosas porque tuvo la capacidad económica para construir su propio observatorio e instrumentos de medición. Las mediciones de Brahe no tuvieron sin embargo mayor utilidad sino hasta que Johannes Kepler (1571-1630) comenzó a utilizarlas. Kepler invirtió muchos años tratando de encontrar la solución a los problemas planteados por el sistema de Copérnico, que utilizaba modelos de movimiento planetario basados principalmente en los sólidos perfectos de Platón. Con los datos completos obtenidos después de la muerte de Brahe, llegó por fin al entendimiento de las órbitas planetarias probando con elipses en vez de los modelos perfectos de Platón y pudo entonces enunciar sus leyes del movimiento planetario.

Nacido en el año de la muerte de Copérnico, Galileo Galilei (1564-1642) fue uno de los defensores más importantes de la teoría heliocentrista. Construyó un telescopio a partir de un invento del holandés Hans Lippershey y fue el primero en utilizarlo para el estudio de los astros. Así descubrió los cráteres de la luna, los satélites de Júpiter, las manchas solares y las fases de Venus. Sus observaciones eran únicamente compatibles con el modelo copernicano.

El trabajo de Galileo lo enfrentó a la Iglesia Católica que ya había prohibido el libro de Copérnico "de Revolutions". Después de varios enfrentamientos con los religiosos en los cuales fue respaldado por el Papa Urbano VIII y a pesar de los pedidos de moderación en la difusión de sus estudios, Galileo escribió su Diálogo sobre los dos máximos sistemas del mundo. En esta obra ridiculizó la posición de la iglesia a través de Simplicio el simplón. Por esta desobediencia fue llevado a juicio en donde fue obligado a abjurar de sus creencias y posteriormente recluido bajo arresto domiciliario, que duró poco. Murió con la bendición papal a los 88 años. Durante el siglo XX el papa Juan Pablo II dio disculpas al mundo por esta injusticia contra Galileo.

Ciencias naturales

Ya en el siglo XVI, se habían observado y descrito plantas y tratado de clasificarlas pero no se había encontrado un buen principio de clasificación. En el siglo XVII Tournefort, después de haber estudiado las plantas de todas las comarcas de Europa, llegó a una clasificación que ha subsistido durante una parte del siglo XVIII. Malpighi disecó las diversas partes de las plantas y publicó una obra en que describió la estructura de los vegetales. En el siglo XVI se había empezado a disecar los cadáveres. Vesale fundó la así la anatomía humana. Fallope había estudiado el interior del oído y el cuerpo humano. Otros estudiaron los huesos. Luego se hizo la anatomía de algunos animales, un hipopótamo, un caballo. Harvey descubrió la circulación de la sangre, lo cual trastornó todas las ideas relativas al cuerpo humano. Un italiano, profesor en Pavía, disecando un perro vivo descubrió los vasos por que circula el quilo. No se había observado en un principio más que el cuerpo humano, por razones prácticas, porque se quería aplicar las observaciones a la Medicina o la Cirugía. Malpighi estudió la organización de los animales de especies diferentes, para compararlas entre sí con puro espíritu científico, e inició así la anatomía comparada. La medicina obtuvo poco provecho de estas observaciones. Los médicos, organizados en cuerpo, no querían renunciar a las doctrinas de los griegos y se negaron por mucho tiempo a admitir la circulación de la sangre. En Francia explican las enfermedades por los humores, y seguían aplicando los antiguos tratamientos, la sangría, la lavativa, los purgantes. No obstante, se empezó en otros países a emplear contra la fiebre la quinina, planta venida América del Sur.

Los inventos

Los antiguos creían que al agua sube en las bombas porque la naturaleza tiene horror al vacío. Pero los fontaneros de Checoslovaquia, habían observado que, a partir de cierta altura, el agua no subía. Torricelli ideó operar con un líquido mucho más pesado que el agua, el mercurio. Vio que en un tubo colocado encima de una cubeta de mercurio. Este no subía a una altura pequeña. Así fue inventado el barómetro. El barómetro había dado la noción del vacío. Otón de Guericke inventó la máquina neumática, que permitió obtener en un recipiente un vació casi tan completo como el del barómetro. Esta máquina fue resultado de una experimentación. Se pudo estudiar la física de los gases como había estudiado los líquidos. La invención del microscopio cambió las condiciones de la observación. De igual modo que el telescopio permitía ver los fenómenos muy alejados, el microscopio hizo visibles los demasiados pequeños para ser percibidos a simple vista. Swammerdam, estudió las metamorfosis de los insectos, y vio que se desarrollan según las mismas leyes que todos los demás animales. Leeuwenhoek, hizo él mismo microscopios, los infusorios, los glóbulos de la sangre. Estudió las arterias y las venas. El Telescopio de Galileo, fue construido en 1609 por el famoso astrónomo. Consistía en un telescopio de refracción, con una lente convexa en la parte delantera y una lente ocular cóncava. Gracias al invento, Galileo observaba la Luna y los guardianes de estrellas, así como pudo descubrir las fases de Venus, lo que indicaba que giraba alrededor del Sol, como la Tierra. También pudo descubrir cuatro satélites orbitando alrededor de Júpiter.


Historia de la ciencia en Oriente

En Oriente Medio, la filosofía griega pudo encontrar algo de apoyo pasajero de la mano del recién creado Califato Islámico (Imperio islámico). Con la extensión del Islam en los siglos VII y VIII, se produjo un periodo de ilustración islámica que duraría hasta el siglo XV. En el mundo islámico, la Edad Media se conoce como la Edad de Oro Islámica, cuando prosperaron la civilización y la sabiduría islámica. A este período dorado de la ciencia islámica contribuyeron varios factores. El uso de una única lengua, el árabe, permitía la comunicación sin necesidad de un traductor. Las traducciones de los textos griegos de Egipto y el Imperio bizantino, y textos en sánscrito de la India, proporcionaban a los eruditos islámicos una base de conocimiento sobre la que construir. Además, estaba el Hajj. Este peregrinaje anual a La Meca facilitaba la colaboración erudita uniendo a las personas y favoreciendo la propagación de nuevas ideas por todo el mundo islámico.

En las versiones islámicas del temprano método científico, la ética desempeñaba un papel muy importante. Durante este período se desarrollaron los conceptos de citación y revisión por pares. Los eruditos islámicos utilizaron los trabajos anteriores en medicina, astronomía y matemáticas como cimientos para desarrollar nuevos campos como la alquimia. En las matemáticas, el erudito islámico Muhammad ibn Musa al-Jwarizmi dio nombre a lo que ahora llamamos algoritmo, y a la palabra álgebra.
Investigadores como Al-Batani (850-929) contribuyeron a los campos de la astronomía y las matemáticas, y Al-Razi a la química. Algunos ejemplos de los frutos de estas contribuciones son el acero de Damasco y la Batería de Bagdad. La alquimia árabe resultó ser una inspiración a Roger Bacon, y más tarde a Isaac Newton. También en la astronomía, Al-Batani mejoró las mediciones de Hiparco, conservadas a través de la obra de Claudio Ptolomeo, El gran tratado, que fue traducido al árabe como Almagesto. Alrededor del año 900, Al-Batani mejoró la precisión de las medidas de la precesión del eje de la Tierra, continuando de esta forma la herencia de un milenio de mediciones en su propia tierra (Babilonia y Caldea - el área que ahora es Irak).

Ciencia china


El cohete de combustible sólido fue inventado en China alrededor de 1150, aproximadamente 200 años después de la invención de la pólvora (que era su combustible principal) y 500 años después de la invención de las cerillas. A la vez que la Era de los Descubrimientos se desarrollaba en Occidente, los emperadores chinos de la dinastía Ming también enviaron barcos a explorar; algunos incluso alcanzaron África. Pero aquellas empresas no pudieron seguir financiándose, deteniendo la exploración y el desarrollo posteriores. Cuando las naves de Magallanes llegaron a Brunei en 1521, encontraron una ciudad próspera, que había sido fortificada por ingenieros chinos, y que estaba protegida por un rompeolas. Antonio Pigafetta observó que mucha de la tecnología de Brunei era equivalente a la tecnología occidental de la época. También, había más cañones en Brunei que en las naves de Magallanes, y los comerciantes chinos que estaban en la corte de Brunei les habían vendido gafas y porcelana, que eran rarezas en Europa.

Sin embargo, la base científica que dio paso a estos progresos tecnológicos parece ser bastante delgada. Por ejemplo, el concepto de fuerza no llegó a ser formulado claramente en los textos chinos del período.

A pesar de ser relativamente reciente el método científico (concebido en la revolución científica del siglo XVII), la historia de la ciencia no se interesa únicamente por los hechos posteriores a dicha ruptura. Por el contrario, ésta intenta rastrear los precursores a la ciencia moderna hasta tiempos prehistóricos.

La ciencia moderna

Tiene sus orígenes en civilizaciones antiguas, como la babilónica, la china y la egipcia. Sin embargo, fueron los griegos los que dejaron más escritos científicos en la Antigüedad. Tanto en las culturas orientales como en las precolombinas evolucionaron las ideas científicas y algunas personas consideran que, durante siglos, fueron muy superiores a las occidentales, sobre todo en matemáticas y astronomía. Sin embargo, los griegos dejaron tratados muy modernos de geometría, álgebra y astronomía.

Durante muchos años las ideas científicas convivieron con mitos, leyendas y pseudociencias. Así, por ejemplo, la astrología convivió con la astronomía, y la alquimia con la química. La astrología sostenía que los astros ejercen influencia real y física sobre nuestra personalidad (la astrología actual ya no lo sostiene así, ahora consiste en el estudio de la influencia simbólica sobre nuestra forma de ser). La alquimia, por su parte, tenía por objetivo encontrar la fórmula para convertir cualquier metal en oro y descubrir el elíxir de la eterna juventud. Ninguna de estas dos disciplinas (astrología y alquimia) aplica el método científico de forma rigurosa, y por tanto, aunque han modificado sus afirmaciones antiguas, no pueden llamarse ciencias.

Desde entonces hasta hoy, la ciencia ha avanzado a pasos agigantados. La ciencia se ha convertido en parte de nuestra cultura y va ligada al avance tecnológico. Es importante que la divulgación científica llegue a toda la sociedad. Para ello, además de los científicos, los medios de comunicación y los museos tienen un papel de vital importancia.

La ciencia de Luis Pasteur refuta el darwinismo

El eminente científico francés Luis Pasteur realizó descubrimientos fundamentales en el campo de la química y la biología. Pasteur desarrolló entre otras vacunas contra la rabia y contra el ántrax. A él se debe la técnica conocida como pasteurización. Pasteur se vio envuelto en la polémica acerca del origen de la vida.

En la segunda mitad del siglo XIX, Luis Pasteur realizó una serie de experimentos que probaron definitivamente que también los microbios se originaban a partir de otros microorganismos. Pasteur estudió de forma independiente el mismo fenómeno que Redi. Utilizó dos matraces de cuello de cisne. Estos matraces tienen los cuellos muy alargados que se van haciendo cada vez más finos, terminando en una apertura pequeña, y tienen forma de s.

En cada uno de ellos metió cantidades iguales de caldo de carne (o caldo nutritivo) y los hizo hervir para poder eliminar los posibles microorganismos presentes en el caldo. La forma de s era para que el aire pudiera entrar y sin embargo que los microorganismos se quedasen en la parte más baja de tubo.

Pasado un tiempo observó que ninguno de los caldos presentaba seña alguna de la presencia de algún microorganismo y cortó el tubo de uno solo de los matraces. El matraz abierto tardó poco en descomponerse, mientras que el cerrado permaneció en su estado inicial. Pasteur demostró así que los microorganismos tampoco provenían de la generación espontánea.

Así, gracias a Pasteur, la idea de la generación espontánea fue desterrada del pensamiento científico y a partir de entonces se aceptó de forma general el principio que decía que todo ser vivo procede de otro ser vivo.

Biogénesis o Abiogénesis

Las investigaciones de Pasteur dieron lugar a la Ley Básica de la Biología también llamada ley de la biogénesis: Todo organismo vivo procede de un organismo vivo.

El mismo Pasteur escribió:

"La generación espontánea es un sueño."

Todos los descubrimientos científicos posteriores han confirmado la Ley de la Biogénesis, jamás se ha observado que la vida celular surja de la materia muerta. La ciencia nuevamente destruía los fundamentos de la teoría de Darwin, puesto que la evolución se asienta sobre el principio de que la vida no fue creada sino surgió espontáneamente. Pasteur y su obra científica representan pues una victoria de la razón científica sobre la creencia atea que los átomos, por sí mismo produce seres vivos.

La creencia de la abiogénesis, el mito perdura. A pesar de todas las evidencias científicas, algunos partidarios de la evolución se negaron a aceptar los hechos científicos; la creencia en la generación espontánea siguió siendo sostenida por varios naturalistas, entre los que destacan Richard Owen o Lamarck.

En oposición a los hechos observados científicamente el conocido evolucionista Tomas Huxley propuso en 1870 la teoría de la abiogénesis; ... la Abiogénesis (del idioma griego a, no, bios, vida y génesis, generación, formación, origen), que podría entenderse como formación de vida a partir de materia no viva, también conocida como autogénesis o generación espontánea es una antigua teoría biológica que sostenía que podía surgir vida animal y vegetal de forma espontánea, a partir de la materia inerte.

La generación espontánea era una creencia popular profundamente arraigada. La observación superficial indicaba que surgían gusanos del fango, moscas de la carne podrida, cochinillas de los lugares húmedos, etc. Así, la idea de que la vida se estaba originando continuamente en la Tierra a partir de esos restos de materia orgánica se estableció como dogma en la ciencia. Hoy en día la comunidad científica considera esta idea una pseudociencia.
     
Actualidad

La historia reciente de la ciencia está marcada por el continuo refinado del conocimiento adquirido y el desarrollo tecnológico, acelerado desde la aparición del método científico. Si bien las revoluciones científicas de principios del siglo XX se dieron sobre todo en el campo de la física a través del desarrollo de la mecánica cuántica y la relatividad general, en el siglo XXI la ciencia se enfrenta a la revolución biotecnológica. El desarrollo moderno de la ciencia avanza en paralelo con el desarrollo tecnológico, y ambos campos se impulsan mutuamente.

Revolución científica y avances científicos recientes





La divulgación científica tiene como objetivo hacer asequible el conocimiento científico a la sociedad más allá del mundo puramente académico. La divulgación puede referirse a los descubrimientos científicos del momento, como la determinación de la masa del neutrino, de teorías bien establecidas como la teoría de la evolución o de campos enteros del conocimiento científico. La divulgación científica es una tarea abordada por escritores, científicos, museos y periodistas de los medios de comunicación. La presencia tan activa y constante de la ciencia en los medios y la de éstos en aquélla ha hecho que, de un tiempo a la fecha, se debata sobre si, más que divulgación científica, debería usarse el término periodismo científico.

La ética de la ciencia

Dado el carácter universal de la ciencia, su influencia se extiende a todos los campos de la sociedad, desde el desarrollo tecnológico a los modernos problemas de tipo jurídico relacionados con campos de la medicina o la genética. En ocasiones la investigación científica permite abordar temas de gran calado social como el Proyecto Genoma Humano y grandes implicaciones éticas como el desarrollo del armamento nuclear, la clonación, la eutanasia y el uso de las células madre.

Asimismo, la investigación científica moderna requiere en ocasiones importantes inversiones en grandes instalaciones como grandes aceleradores de partículas (CERN), la exploración espacial o la investigación de la fusión nuclear en proyectos como ITER. En todos estos casos es deseable que los logros científicos conseguidos lleguen a la sociedad.

Divulgación científica

La divulgación científica es el conjunto de actividades que interpretan y hacen accesible el conocimiento científico al público general, es decir, a todas aquellas labores que llevan el conocimiento científico a las personas interesadas en entender o informarse de ese tipo de conocimiento. La divulgación pone su interés no sólo en los descubrimientos científicos del momento.

Ley científica

Una ley científica es una proposición científica que afirma una relación constante entre dos o más variables o factores, cada uno de las cuales representa (al menos parcial e indirectamente) una propiedad de sistemas concretos. Se define también como una regla y norma constante e invariable de las cosas, nacida de la causa primera o de las cualidades y condiciones de las mismas. Por lo general, se expresa matemáticamente.

Descripción

Las leyes generales pueden tener una prueba indirecta probando proposiciones particulares derivadas de ellas y que sean verificables. Los fenómenos inaccesibles reciben una prueba indirecta de su comportamiento a través del efecto que puedan producir sobre otros hechos que se puedan observar y experimentar.

ü  En ciencias naturales, una ley científica es una regla que relaciona eventos que tienen una ocurrencia conjunta, generalmente causal, y que ha sido puesta de manifiesto siguiendo el método científico. Se acepta que tras una ley científica natural existe cierto mecanismo necesario que hace que las cosas sucedan de cierto modo regularmente.
ü  En ciencias sociales, una hipótesis científica confirmada se refiere a una característica que es común a muchos fenómenos sociales diferentes, y que presentan un patrón regular o constante a lo largo del tiempo en determinadas circunstancias. Así, se dice que los sujetos sociales se comportan bajo las mismas características, es decir, de acuerdo con la ley de comportamiento. A veces se considera que algunas leyes sociales son contingentes o históricamente condicionadas.

Ley científica y ciencia

Los hechos que se comportan según patrones regulares y constantes en ciencias son descritos mediante una proposición lingüística o ley científica que es una aproximación a los hechos en toda su complejidad. Con la ciencia experimental comienza la búsqueda de leyes científicas asociadas a los distintos fenómenos.

La actividad científica se desarrolla en función de la ley científica. De ahí que el físico Max Planck propone los siguientes principios de la ciencia experimental:

A.           La naturaleza existe de por sí y el hombre no es sino una pequeña parte de ella.

B.           La naturaleza es legal (satisface leyes) y la legalidad es causal (no hay azar objetivo).


C.           La realidad puede conocerse de a poco, aunque jamás perfectamente.

D.           La ciencia marcha de la diversidad a la unidad, de lo subjetivo a lo objetivo, y de lo relativo a lo absoluto.


En la actualidad, sabemos que existen leyes científicas tanto causales como probabilísticas o estocásticas. De ahí que el concepto de ley científica debe considerar ambos tipos de ley (determinista y estocástica). Podríamos ampliar los fundamentos de la ciencia de Planck y proponer los siguientes (que son aceptados tácitamente por la mayoría de los científicos):

·         Todo lo existente está regido por leyes naturales.
·         Estas leyes son invariantes en el tiempo y en el espacio.
·         La actividad del científico consiste en describirlas.
·         La existencia de estas leyes es independiente de que el hombre las describa, o no.
·         Es posible, en principio, conocer la totalidad de las leyes

Método científico



Cada ciencia, y aun cada investigación concreta, generan su propio método de investigación. En general, se define como método el proceso mediante el cual una teoría científica es validada o bien descartada. La forma clásica del método de la ciencia ha sido la inducción (formalizada por Francis Bacon en la ciencia moderna), pero que ha sido fuertemente cuestionada como el método de la ciencia, especialmente por Karl Popper, quien sostuvo que el método de la ciencia es el hipotético-deductivo.
En todo caso, cualquiera de los métodos científicos utilizados requiere los siguientes criterios:

   La reproducibilidad, es decir, la capacidad de repetir un determinado experimento en cualquier lugar y por cualquier persona. Esto se basa, esencialmente, en la comunicación de los resultados obtenidos. En la actualidad éstos se publican generalmente en revistas científicas y revisadas por pares.

   La falsabilidad, es decir, la capacidad de una teoría de ser sometida a potenciales pruebas que la contradigan. Según este criterio, se distingue el ámbito de lo que es ciencia de cualquier otro conocimiento que no lo sea: es el denominado criterio de demarcación de Karl Popper. La corroboración experimental de una teoría científicamente "probada" —aun la más fundamental de ellas— se mantiene siempre abierta a escrutinio.

   En las ciencias empíricas no es posible la verificación; no existe el "conocimiento perfecto", es decir, "probado". En las ciencias formales las deducciones lógicas o demostraciones matemáticas generan pruebas únicamente dentro del marco del sistema definido por ciertos axiomas y ciertas reglas de inferencia. Según el teorema de Gödel, no existe un sistema lógico perfecto, que sería consistente, decidible y completo.

Existe una serie de pasos inherentes al proceso científico que, aunque no suelen seguirse en el orden aquí presentado, suelen ser respetados para la construcción y el desarrollo de nuevas teorías. Éstos son: 

A.   Observación: registrar y examinar atentamente un fenómeno, generalmente dentro de una muestra específica, es decir, dentro de un conjunto previamente establecido de casos.
B.   Descripción: detallar los aspectos del fenómeno, proponiendo incluso nuevos términos al respecto.
C.   Hipótesis: plantear las hipótesis que expliquen lo observado en el fenómeno y las relaciones causales o las correlaciones correspondientes.
D.   Experimentación: es el conjunto de operaciones o actividades destinadas, a través de situaciones generalmente arbitrarias y controladas, a descubrir, comprobar o demostrar las hipótesis.
E.   Demostración o refutación, a partir de los resultados de uno o más experimentos realizados, de las hipótesis propuestas inicialmente.
F.    Inducción: extraer el principio general implícito en los resultados observados.
G.   Comparación universal: la permanente contrastación de hipótesis con la realidad.

La experimentación no es aplicable a todas las ramas de la ciencia; su exigencia no es necesaria por lo general en áreas del conocimiento como la vulcanología, la astronomía, la física teórica, etc. Sin embargo, la repetibilidad de la observación de los fenómenos naturales es un requisito fundamental de toda ciencia que establece las condiciones que, de producirse, harían falsa la teoría o hipótesis investigada. Por otra parte, existen ciencias, especialmente en el caso de las ciencias humanas y sociales, donde los fenómenos no sólo no se pueden repetir controlada y artificialmente (que es en lo que consiste un experimento), sino que son, por su esencia, irrepetibles, por ejemplo, la historia. De forma que el concepto de método científico aplicado a estas ciencias habría de ser repensado, y la definición podría ser como sigue: "Proceso de conocimiento caracterizado por el uso constante e irrestricto de la capacidad crítica de la razón que busca establecer la explicación de un fenómeno ateniéndose a lo previamente conocido, y que busca generar, como resultado, una explicación plenamente congruente con los datos de la observación

El método científico es un método de investigación usado principalmente en la producción de conocimiento en las ciencias. Presenta diversas definiciones debido a la complejidad de una exactitud en su conceptualización: "Conjunto de pasos fijados de antemano por una disciplina con el fin de alcanzar conocimientos válidos mediante instrumentos confiables", "secuencia estándar para formular y responder a una pregunta", "pauta que permite a los investigadores ir desde el punto A hasta el punto Z con la confianza de obtener un conocimiento válido".

Este método está sustentado por dos pilares fundamentales. El primero de ellos es la reproducibilidad, es decir, la capacidad de repetir un determinado experimento, en cualquier lugar y por cualquier persona. Este pilar se basa, esencialmente, en la comunicación y publicidad de los resultados obtenidos. El segundo pilar es la falsabilidad. Es decir, que toda proposición científica tiene que ser susceptible de ser falsada. Esto implica que se pueden diseñar experimentos que en el caso de dar resultados distintos a los predichos negarían la hipótesis puesta a prueba. La falsabilidad no es otra cosa que el modus tollendo tollens del método hipotético deductivo experimental. Según James B. Conant no existe un método científico. El científico usa métodos definitorios, métodos clasificatorios, métodos estadísticos, métodos hipotético-deductivos, procedimientos de medición, etcétera. Según esto, referirse al método científico es referirse a este conjunto de tácticas empleadas para constituir el conocimiento, sujetas al devenir histórico, y que pueden ser otras en el futuro. Ello nos conduce tratar de sistematizar las distintas ramas dentro del campo del método científico.

La filosofía reconoce numerosos métodos, entre los que están el método por definición, demostración, dialéctico, trascendental, intuitivo, fenomenológico, semiótico, axiomático, inductivo. La filosofía de la ciencia es la que, en conjunto, mejor establece los supuestos ontológicos y metodológicos de las ciencias, señalando su evolución en la historia de la ciencia y los distintos paradigmas dentro de los que se desarrolla.

Tipologías

La sistematización de los métodos científicos es una materia compleja y difícil. No existe una única clasificación, ni siquiera a la hora de considerar cuántos métodos distintos existen. A pesar de ello aquí se presenta una clasificación que cuenta con cierto consenso dentro de la comunidad científica. Además es importante saber que ningún método es un camino infalible para el conocimiento, todos constituyen una propuesta racional para llegar a su obtención.

A.   Método empírico-analítico. Conocimiento autocorrectivo y progresivo. Características de las ciencias naturales y sociales o humanas. Caracteriza a las ciencias descriptivas. Es el método general más utilizado. Se basa en la lógica empírica. Dentro de éste podemos observar varios métodos específicos con técnicas particulares. Se distinguen los elementos de un fenómeno y se procede a revisar ordenadamente cada uno de ellos por separado.

B.   Método experimental: Algunos lo consideran por su gran desarrollo y relevancia un método independiente del método empírico, considerándose a su vez independiente de la lógica empírica su base, la lógica experimental. Comprende a su vez:

a.     Método hipotético deductivo. En el caso de que se considere al método experimental como un método independiente, el método hipotético deductivo pasaría a ser un método específico dentro del método empírico analítico, e incluso fuera de éste.

b.    Método de la observación científica: Es el propio de las ciencias descriptivas.

c.    Método de la medición: A partir del cual surge todo el complejo empírico-estadístico.

d.    Método hermenéutico: Es el estudio de la coherencia interna de los textos, la Filología, la exégesis de libros sagrados y el estudio de la coherencia de las normas y principios.


e.    Método dialéctico: La característica esencial del método dialéctico es que considera los fenómenos históricos y sociales en continuo movimiento. Dio origen al materialismo histórico.

f.     Método fenomenológico. Conocimiento acumulativo y menos autocorrectivo.

g.    Método histórico. Está vinculado al conocimiento de las distintas etapas de los objetos en su sucesión cronológica. Para conocer la evolución y desarrollo del objeto o fenómeno de investigación se hace necesario revelar su historia, las etapas principales de su desenvolvimiento y las conexiones históricas fundamentales. Mediante el método histórico se analiza la trayectoria concreta de la teoría, su condicionamiento a los diferentes períodos de la historia.

h.    Método sistémico. Está dirigido a modelar el objeto mediante la determinación de sus componentes, así como las relaciones entre ellos. Esas relaciones determinan por un lado la estructura del objeto y por otro su dinámica.

i.      Método sintético. Es un proceso mediante el cual se relacionan hechos aparentemente aislados y se formula una teoría que unifica los diversos elementos. Consiste en la reunión racional de varios elementos dispersos en una nueva totalidad, este se presenta más en el planteamiento de la hipótesis. El investigador sintetiza las superaciones en la imaginación para establecer una explicación tentativa que someterá a prueba.

j.      Método lógico. Es otra gran rama del método científico, aunque es más clásica y de menor fiabilidad. Su unión con el método empírico dio lugar al método hipotético deductivo, uno de los más fiables hoy en día.

k.    Método lógico deductivo: Mediante él se aplican los principios descubiertos a casos particulares, a partir de un enlace de juicios. Destaca en su aplicación el método de extrapolación. Se divide en:

§  Método deductivo directo de conclusión inmediata: Se obtiene el juicio de una sola premisa, es decir que se llega a una conclusión directa sin intermediarios.

§  Método deductivo indirecto o de conclusión mediata: La premisa mayor contiene la proposición universal, la premisa menor contiene la proposición particular, de su comparación resulta la conclusión. Utiliza silogismos.


§  Método lógico inductivo: Es el razonamiento que, partiendo de casos particulares, se eleva a conocimientos generales. Destaca en su aplicación el método de interpolación. Se divide en:

Ø  Método inductivo de inducción completa: La conclusión es sacada del estudio de todos los elementos que forman el objeto de investigación, es decir que solo es posible si conocemos con exactitud el número de elementos que forman el objeto de estudio y además, cuando sabemos que el conocimiento generalizado pertenece a cada uno de los elementos del objeto de investigación.

Ø   Método inductivo de inducción incompleta: Los elementos del objeto de investigación no pueden ser numerados y estudiados en su totalidad, obligando al sujeto de investigación a recurrir a tomar una muestra representativa, que permita hacer generalizaciones. Éste a su vez comprende:


1)    Método de inducción por simple enumeración o conclusión probable. Es un método utilizado en objetos de investigación cuyos elementos son muy grandes o infinitos. Se infiere una conclusión universal observando que un mismo carácter se repite en una serie de elementos homogéneos, pertenecientes al objeto de investigación, sin que se presente ningún caso que entre en contradicción o niegue el carácter común observado. La mayor o menor probabilidad en la aplicación del método, radica en el número de casos que se analicen, por tanto sus conclusiones no pueden ser tomadas como demostraciones de algo, sino como posibilidades de veracidad. Basta con que aparezca un solo caso que niegue la conclusión para que esta sea refutada como falsa.

2)   Método de inducción científica. Se estudian los caracteres y/o conexiones necesarios del objeto de investigación, relaciones de causalidad, entre otros. Guarda enorme relación con el método empírico.

3)    Analogía: Consiste en inferir de la semejanza de algunas características entre dos objetos, la probabilidad de que las características restantes sean también semejantes. Los razonamientos analógicos no son siempre válidos.

Descripciones del método científico


Modelo simplificado para el método científico que se sigue en el MC-14 o método científico en 14 etapas.

Por proceso o "método científico" se entiende aquellas prácticas utilizadas y ratificadas por la comunidad científica como válidas a la hora de proceder con el fin de exponer y confirmar sus teorías. Las teorías científicas, destinadas a explicar de alguna manera los fenómenos que observamos, pueden apoyarse o no en experimentos que certifiquen su validez. Sin embargo, hay que dejar claro que el mero uso de metodologías experimentales, no es necesariamente sinónimo del uso del método científico, o su realización al 100%. Por ello, Francis Bacon definió el método científico de la siguiente manera:

1.   Observación: Observar es aplicar atentamente los sentidos a un objeto o a un fenómeno, para estudiarlos tal como se presentan en realidad, puede ser ocasional o causalmente.
2.   Inducción: La acción y efecto de extraer, a partir de determinadas observaciones o experiencias particulares, el principio particular de cada una de ellas.
3.   Hipótesis: Planteamiento mediante la observación siguiendo las normas establecidas por el método científico.
4.   Probar la hipótesis por experimentación.
5.   Demostración o refutación (antítesis) de la hipótesis.
6.   Tesis o teoría científica (conclusiones).

Así queda definido el método científico tal y como es normalmente entendido, es decir, la representación social dominante del mismo. Esta definición se corresponde sin embargo únicamente a la visión de la ciencia denominada positivismo en su versión más primitiva. Empero, es evidente que la exigencia de la experimentación es imposible de aplicar a áreas de conocimiento como la vulcanología, la astronomía, la física teórica, etcétera. En tales casos, es suficiente la observación de los fenómenos producidos naturalmente, en los que el método científico se utiliza en los estudios (directos o indirectos) a partir de modelos más pequeños, o a partes de éste.

Por otra parte, existen ciencias no incluidas en las ciencias naturales, especialmente en el caso de las ciencias humanas y sociales, donde los fenómenos no sólo no se pueden repetir controlada y artificialmente (que es en lo que consiste un experimento), sino que son, por su esencia, irrepetibles, por ejemplo la historia. De forma que el concepto de método científico ha de ser repensado, acercándose más a una definición como la siguiente:

"proceso de conocimiento caracterizado por el uso constante e irrestricto de la capacidad crítica de la razón, que busca establecer la explicación de un fenómeno ateniéndose a lo previamente conocido, resultando una explicación plenamente congruente con los datos de la observación".

Así, por método o proceso científico se entiende aquellas prácticas utilizadas y ratificadas por la comunidad científica como válidas a la hora de proceder con el fin de exponer y confirmar sus teorías, como por ejemplo los Postulados de Koch para la microbiología. Las teorías científicas, destinadas a explicar de alguna manera los fenómenos que observamos, pueden apoyarse o no en experimentos que certifiquen su validez.

El método científico como método para la eliminación de falacias y prejuicios

El método científico envuelve la observación de fenómenos naturales, luego, la postulación de hipótesis y su comprobación mediante la experimentación. Pues bien, los prejuicios cognitivos no son más que hipótesis, inducciones o construcciones mentales que han sido sesgadas positiva o negativamente por el cerebro. Asimismo cuando se realizan afirmaciones o se argumenta y estos prejuicios cognitivos salen a la luz se convierten en falacias. El prejuicio cognitivo o proceso mental con el que se sesgan las creencias no se puede eliminar pues es un aspecto fisiológico intrínseco a la psique del ser humano y que además parece estar extendido evolutivamente ya que cumple su función en la asociación y reconocimiento de objetos cotidianos, véase por ejemplo pareidolia. Lo que es posible es compensar el sesgo o modificar las propias creencias mediante el método científico como mecanismo para descartar hipótesis que son falsas. De esta forma, el sesgo se situaría en dirección a hipótesis que son menos falsas hasta nuevas revisiones en busca de factores desconocidos o nueva información.

La ciencia no pretende ser ni absoluta, ni autoritaria, ni dogmática. Todas las ideas, hipótesis, teorías; todo el conocimiento científico está sujeto a revisión, a estudio y a modificación. El conocimiento que tenemos representa las hipótesis científicas y teorías respaldadas por observaciones y experimentos (método empírico). Para no caer en el prejuicio cognitivo es necesario, por tanto, la experimentación, el no hacerlo llevaría a la misma negligencia puesto que la verdad de una aseveración según el método científico recae en la fuerza de sus evidencias comprobadas por experimentación. Después de llevar a cabo la experimentación se analiza los resultados y se llega a una conclusión. Si los resultados respaldan la hipótesis, ésta adquiere validez; si los resultados la refutan, ésta se descarta o se modifica presentando nuevas formas para refutarla.

El método científico es también afectado naturalmente por los prejuicios cognitivos ya que los efectos asociativos de nuestra mente son los que permiten, al mismo tiempo, lanzar el mayor número de hipótesis. Sin embargo, el método, si es bien ejecutado en sus últimos y más importantes pasos, permite desecharlas. El primer paso en el método científico de tipo empírico es la observación cuidadosa de un fenómeno y la descripción de los hechos, es aquí donde entran en juego los prejuicios. Después, el científico trata de explicarlo mediante hipótesis las cuales, ya están sesgadas por los prejuicios en la percepción de los acontecimientos o en las propias creencias. Sin embargo, solamente las ideas que puedan comprobarse experimentalmente están dentro del ámbito de la ciencia lo que permite desechar muchas teorías. Si las hipótesis enunciadas fueran invalidadas deberían predecir las consecuencias en el experimento y además debería ser posible repetirlas. De esta forma, mediante la experimentación, la repetición y supervisión del experimento por parte de personas que pudieran tener otros sesgos cognitivos se minimizan los errores del experimento, los errores en la interpretación de los resultados o errores en estadísticas que harían a la teoría una falsa o imprecisa creencia. Por eso, en ciencia se usa la revisión por pares, a mayor número de revisiones menor probabilidad de sesgo o de falsa interpretación de los datos experimentales, con lo que el trabajo es considerado más riguroso o estable. Un proceso así aunque mucho menos riguroso se puede observar en el pensamiento crítico cuando éste requiere de investigación activa propia para el esclarecimiento de argumentos y comprobación de las fuentes de información. En el pensamiento crítico se toman decisiones en función de la carga de la prueba que se hayan realizado sobre las fuentes y los argumentos y la información que se obtiene puede llegar a ser indirecta (de ahí la falta de rigurosidad). En el método científico no solo debe ser el hecho probado por la experimentación directa sino que debe ser posible repetirlo.

El problema con los prejuicios cognitivos es que normalmente se aplican a conceptos que cambian con regularidad quizás a una velocidad mayor de lo que es posible medirlo mediante pruebas o experimentación, además no son uniformes y poseen excepciones, estos prejuicios se basan por tanto en probabilidades y no en afirmaciones certeras. El método científico por lo menos permite ponderar estas probabilidades, realizar estadísticas y revisar la propia seguridad en las afirmaciones. De esta forma debería eliminar la posición de certeza o del perfecto conocimiento del funcionamiento del mundo (otro sesgo extendido). El método científico, por tanto, se convierte en el método maestro para probar hipótesis y desechar las falsas. A esto se refería Einstein cuando dijo "No existe una cantidad suficiente de experimentos que muestren que estoy en lo correcto; pero un simple experimento puede probar que me equivoco". De otra forma, sin el método científico, las presunciones o prejuicios quedarían fijas cuando las circunstancias cambian, sujetas a nuestras propias interpretaciones de la realidad.

La ciencia como producto de la lógica y la razón

El empirismo y el logicismo son las dos principales fuentes de los orígenes de la filosofía analítica. Uno de los primeros movimientos fuertes dentro de esta corriente fue el positivismo lógico o empirismo lógico. Dentro de ella también tiene un lugar especial el estudio de la lógica y los lenguajes, la filosofía del lenguaje (donde destacaron Ludwig Wittgenstein (1889-1951), Bertrand Russell (1872-1970) y Alfred North Whitehead (1861-1947).

Se suele considerar que la filosofía de la ciencia alcanza su edad adulta en los años 1920 con la aparición del Círculo de Viena, en el que se encuadró un nutrido grupo de filósofos como Rudolf Carnap (1891-1970), Otto Neurath (1881-1945), Hans Hahn (1879-1934), Kurt Gödel (1906-1978), Willard V. Quine (1908-2000). A imitación del de Viena, Hans Reichenbach (1891-1953) fundó el Grupo o Círculo de Berlín.

El Círculo de Viena encabezado por el Dr. Craidoff propuso un modelo de ciencia en el que ésta procede mediante generalizaciones (inducción) a partir de los datos. La visión de la ciencia del Círculo de Viena es llamada también Concepción Heredada o Concepción Heredada de la Ciencia. La idea central del positivismo y del neopositivismo propuesta por el Dr. Craidoff es que la ciencia debe utilizar las teorías como instrumentos para predecir fenómenos observables y debe renunciar a buscar explicaciones. La búsqueda de explicaciones es función de la metafísica, que no es ciencia sino palabrería carente de significado. Así, el neopositivismo presenta una visión instrumentalista de la ciencia. De acuerdo con estas ideas los integrantes del Círculo defendieron un criterio verificacionista de significado que agrupaba los enunciados en dos clases:

A. Enunciados con sentido, que son afirmaciones que pueden comprobarse empíricamente si son verdaderas o falsas.
B.   Enunciados sin sentido, que son enunciados mal construidos cuya verdad o falsedad no puede comprobarse empíricamente. Basándose en este criterio, el Círculo fue fuertemente antimetafísico y antiteológico.

Con el progreso de la ciencia ésta comenzó el estudio de campos que están más allá de la experiencia, como puede ser la física de altas energías o la física atómica. En esta situación el criterio empirista de verdad condujo a muchos problemas, lo que llevó a diversas matizaciones del mismo. El verificacionismo estricto acabó siendo abandonado y sustituido por la contrastación entre proposiciones y observaciones, lo que permite una confirmación gradualmente creciente de las teorías.

La afirmación introducida por el empirismo de que hay datos puros (sin ningún tipo de interpretación ni elaboración) y la positivista de que la ciencia debe utilizar un lenguaje observacional exento de teoría son especialmente criticadas por los principales filósofos de la ciencia desde hace décadas y, en la actualidad, el neopositivismo estricto ya no está considerado como viable. Sin embargo, en su época ejerció un dominio absoluto en la filosofía de la ciencia. Su influencia ha sido capital y es rastreable en muchos filósofos de la actualidad.

Falsacionismo

Aunque Karl Popper (1902-1994) tuvo en sus comienzos mucha relación con los integrantes del Círculo de Viena, desde su primera obra La lógica de la investigación científica (1934) ya se mostró muy crítico con éste. Sin embargo este trabajo tuvo muy poca difusión durante años, y no fue hasta principios de la década de los sesenta cuando Popper comenzó a ser conocido y valorado.

Frente al neopositivismo, Popper calificó su postura de racionalismo crítico. A diferencia del Círculo de Viena, para Popper la ciencia no es capaz de verificar si una hipótesis es cierta, pero sí puede demostrar si ésta es falsa. Por eso no sirve la inducción, porque por mucho que se experimente nunca se podrá examinar todos los casos posibles, y basta con un solo contraejemplo para echar por tierra una teoría. Así pues, frente a la postura verificacionista preponderante hasta ese momento en filosofía de la ciencia, Popper propone el Falsacionismo. Aunque Popper era realista no aceptaba la certeza, es decir, nunca se puede saber cuándo nuestro conocimiento es cierto.

Popper comenzó describiendo la ciencia, pero en su evolución filosófica acabó siendo prescriptivo (aunque sin llegar al rigor normativo del Círculo), recomendando a la ciencia el método hipotético deductivo. Es decir, la ciencia no elabora enunciados ciertos a partir de datos, sino que propone hipótesis (que aunque se basen en la experiencia suelen ir más allá de ésta y predecir experiencias nuevas) que luego somete al filtro experimental para detectar los errores.

La reacción

Hasta la década de los sesenta habían prevalecido las explicaciones lógicas de la ciencia. A partir de la obra de Thomas Kuhn (1922-1996) La estructura de las revoluciones científicas hubo un cambio en la perspectiva y se empezaron a tener en cuenta los aspectos históricos, sociológicos y culturales de la ciencia.

Ciencia, historia y revolución científica



La estructura de las revoluciones científicas se puede clasificar de descriptiva. Apenas dedica espacio a conceptos como verdad o conocimiento, y presenta la ciencia bajo un enfoque histórico y sociológico. Las teorías dominantes bajo las que trabajan los científicos conforman lo que Kuhn llama paradigma. La ciencia normal es el estado habitual de la ciencia en el que el científico no busca criticar, de ninguna manera, el paradigma, sino que da éste por asumido y busca la ampliación del mismo. Si el número o la importancia de problemas no resueltos dentro de un paradigma son demasiado grandes, puede sobrevenir una crisis y cuestionarse la validez del paradigma. Entonces la ciencia pasa al estado de ciencia extraordinaria o ciencia revolucionaria en el que los científicos ensayan teorías nuevas. Si se acepta un nuevo paradigma que sustituya al antiguo se ha producido una revolución científica. Así se entra en un periodo nuevo de ciencia normal en el que se intenta conocer todo el alcance del nuevo paradigma.

El nuevo paradigma no se admite únicamente por argumentos lógicos, en este proceso intervienen de manera importante aspectos culturales propios de la persona del científico. Según Kuhn, la visión de la naturaleza que acompaña al nuevo paradigma no puede compararse bajo ningún elemento común a la del antiguo; a esto Kuhn llama la inconmensurabilidad de los paradigmas. El nuevo se admite de forma generalizada cuando los científicos del antiguo paradigma van siendo sustituidos.

Falsacionismo sofisticado

Lakatos (1922-1974) intentó adaptar el sistema de Popper a la nueva situación creada por Kuhn. Su intención era realizar una reconstrucción racional de la historia de la ciencia, mostrando que ésta progresaba de modo racional. La historia de la ciencia muestra que ésta no avanza sólo falsando teorías con hechos, hay que tener en cuenta la competencia entre teorías y la confirmación de teorías. Por ello sustituye el falsacionismo ingenuo de Popper por un falsacionismo sofisticado. En la realidad la ciencia no evalúa una teoría aislada, sino un conjunto de ellas que conforman lo que Lakatos llama programa de investigación científica. Un programa de investigación se rechaza al completo cuando se disponga de un sustituto superior, que explique todo lo que explicaba el anterior más otros hechos adicionales. Lakatos reconoce que la dificultad de este esquema radica en que, en la práctica, puede costar años llevarlo a cabo, o incluso ser inaplicable en programas de investigación muy complejos.

     Pluralismo metodológico

Paul K. Feyerabend (1924-1994) afirmó que una metodología científica universalmente válida es un contrasentido, que no pueden dictarse normas a la ciencia para su desarrollo. Criticó ácidamente el cientificismo por ser "castillos en el aire" y como alternativa propuso un anarquismo epistemológico. Puesto que no hay conocimientos ciertos y no se sabe qué paradigmas dominarán la ciencia del futuro, descartarlos ahora supone cerrar puertas al mañana.

Corrientes actuales

Para hablar de una filosofía de la ciencia no basta con tener una visión panorámica de lo que es filosofía y de lo que es ciencia. Tampoco es suficiente el seguimiento histórico de las opiniones y conceptos emitidos por los pensadores del pasado. Es necesario ubicarse en el pensamiento actual de los científicos más avanzados y respetar sus conceptos sobre lo que ellos consideran como ciencia, y es necesario entender que el dominio de la filosofía son los conceptos universales y abstractos que nunca pueden llegar a ser objeto de la ciencia.

Es extremadamente complejo (y, posiblemente, todavía falta algo más de perspectiva temporal) presentar un panorama completo de la filosofía de la ciencia de los últimos treinta o treinta y cinco años. Así como todos los autores anteriores ya han muerto, la mayoría de los que vienen a continuación no. Aquí se intentará presentar un bosquejo de la gran variedad de enfoques actuales pero teniendo en mente que, dentro de pocos años, algunas de las corrientes mencionadas pueden haber pasado al olvido, y que destaquen otros pensadores que hoy tienen una repercusión menor.

Así como anteriormente se podía hablar de "el método" de la ciencia, el gran desarrollo de muchas disciplinas científicas ha hecho que los filósofos de la ciencia comiencen a hablar de "los métodos", ya que no es posible identificar un método único y universalmente válido. La idea heredada de la física clásica de que todo es reducible a expresiones matemáticas ha cedido terreno ante situaciones nuevas como la teoría del caos o los avances de la biología. Por otro lado han desaparecido cuestiones que llegaron a cubrir cientos de páginas y generaron grandes controversias. Quizás el caso más flagrante sea el del problema de la demarcación, centrado en la distinción (demarcación) entre ciencia y otros conocimientos no científicos. Prácticamente el tema desaparece después de Popper y es seguido en España por Gustavo Bueno en su teoría del cierre categorial.

Concepciones estructuralistas y semánticas

Frente al intento de los anteriores empiristas lógicos de formalizar las teorías de la física en el lenguaje de la lógica de primer orden, que resultaba un tanto forzado e innecesariamente complicado, Patrick Suppes fue el primero en proponer una concepción semántica y estructural de las teorías, caracterizadas como familias de estructuras conjuntistas identificadas con los modelos de la teoría. Esta manera de presentar las teorías en el lenguaje informal de la teoría de conjuntos resultaba así más intuitiva y familiar. Suppes ha elaborado sus ideas mediante el desarrollo de teorías cada vez más potentes sobre las estructuras teóricas, incluyendo sus importantes teoremas de representación e invariancia.

En filosofía de la ciencia se conoce a veces como estructuralismo el programa de reconstrucción de las teorías físicas propuesto por Joseph D. Sneed (1938) en 19716 como una síntesis del aparato formal de Suppes, del racionalismo crítico y del positivismo lógico con la corriente historicista de la ciencia. El estructuralismo fue reelaborado y divulgado por Wolfgang Stegmüller (1923-1991) y Carlos Ulises Moulines (1946). De la consideración de las teorías como estructuras le viene a esta propuesta metodológica el nombre de estructuralismo, que no tiene nada que ver con el estructuralismo lingüístico de Saussure.
Junto con las restricciones empíricas, una teoría consta de una estructura conceptual y de un ámbito de aplicación. Puesto que las teorías no se presentan aisladas sino interrelacionadas también es necesario estudiar las relaciones entre teorías, las redes teóricas. Entre estas relaciones encontramos la de reducción, quizá la más destacada por su papel en la unidad de la ciencia. A pesar de las múltiples teorías que puedan coexistir para explicar los mismos hechos, la unidad ontológica de la ciencia puede salvarse si todas ellas son reductibles a una sola teoría (o a unas pocas no inconmensurables entre sí). Esta relación interteorética desempeña un papel fundamental, por ejemplo, en el trabajo de los físicos en su búsqueda de la Teoría del todo. Moulines propone una definición recursiva de la filosofía de la ciencia como teorización sobre teorizaciones, cuya epistemología no es descriptiva ni prescriptiva, sino interpretativa. Las teorías de la ciencia son construcciones culturales, pero ello no implica que la filosofía de la ciencia sea sustituida por una sociología de la ciencia.

Aparte del estructuralismo de Sneed y sus seguidores, también otros desarrollos de la filosofía de la ciencia contemporánea han sido influidos por las ideas y métodos conjuntistas y probabilistas introducidos por Suppes. Bas van Fraassen ha aportado su conocida concepción semántica de las teorías, que ha aplicado al análisis de la mecánica cuántica. Jesús Mosterín y Roberto Torretti han hecho contribuciones en esta dirección, que asimismo aflora en el diccionario conjunto de estos dos autores.

Filosofía de la ciencia naturalizada

Para Ronald N. Giere (1938) el propio estudio de la ciencia debe ser también una ciencia: "La única filosofía de la ciencia viable es una filosofía de la ciencia naturalizada". Esto es así porque la filosofía no dispone de herramientas apropiadas para el estudio de la ciencia en profundidad. Giere sugiere, pues, un reduccionismo en el sentido de que para él la única racionalidad legítima es la de la ciencia. Propone su punto de vista como el inicio de una disciplina nueva, una epistemología naturalista y evolucionista, que sustituirá a la filosofía de la ciencia actual.

Larry Laudan (1941) propone sustituir el que él denomina modelo jerárquico de la toma de decisiones por el modelo reticulado de justificación. En el modelo jerárquico los objetivos de la ciencia determinan los métodos que se utilizarán, y éstos determinan los resultados y teorías. En el modelo reticulado se tiene en cuenta que cada elemento influye sobre los otros dos, la justificación fluye en todos los sentidos. En este modelo el progreso de la ciencia está siempre relacionado con el cambio de objetivos, la ciencia carece de objetivos estables.

Realismo frente a empirismo

El debate sobre el realismo de la ciencia no es nuevo, pero en la actualidad aún está abierto. Bas C. Van Fraasen (1941), empirista y uno de los principales oponentes del realismo, opina que todo lo que se requiere para la aceptación de las teorías es su adecuación empírica. La ciencia debe explicar lo observado deduciéndolo de postulados que no necesitan ser verdaderos más que en aquellos puntos que son empíricamente comprobables. Llega a decir que "no hay razón para afirmar siquiera que existe una cosa tal como el mundo real". Es el empirismo constructivo, para el que lo decisivo no es lo real, sino lo observable.

Laudan y Giere presentan una postura intermedia entre el realismo y el subjetivismo estrictos. Laudan opina que es falso que sólo el realismo explique el éxito de la ciencia. Giere propone que hay ciencias que presentan un alto grado de abstracción, como la mecánica cuántica, y utilizan modelos matemáticos muy abstractos. Estas teorías son poco realistas. Las ciencias que estudian fenómenos naturales muy organizados como la biología molecular, utilizan teorías que son muy realistas. Por ello no se puede utilizar un criterio uniforme de verdad científica.

Rom Harré (1927) y su discípulo Roy Bhaskar (1944) desarrollaron el realismo crítico, un cuerpo de pensamiento que quiere ser el heredero de la Ilustración en su lucha contra los irracionalismos y el racionalismo reduccionista. Destacan que el empirismo y el realismo conducen a dos tipos diferentes de investigación científica. La línea empirista busca nuevas concordancias con la teoría, mientras que la línea realista intenta conocer mejor las causas y los efectos. Esto implica que el realismo es más coherente con los conocimientos científicos actuales.

Dentro de la corriente racionalista de oposición al neopositivismo se encuentra a Mario Bunge (1919). Analiza los problemas de diversas epistemologías, desde el racionalismo crítico popperiano hasta el empirismo, el subjetivismo o el relativismo. Bunge es realista crítico. Para él la ciencia es falibilista (el conocimiento del mundo es provisional e incierto), pero la realidad existe y es objetiva. Además se presenta como materialista, pero para soslayar los problemas de esta doctrina apostilla que se trata de un materialismo emergentista.

Sociología de la ciencia

Robert K. Merton (1910-2003) se considera el fundador de la sociología de la ciencia en los años cuarenta, luego muy influida por los trabajos de Kuhn, 'La estructura de las revoluciones científicas', 1962 y 1969. La aportación básica para la filosofía de la ciencia fue introducir el término paradigma como supuestos teóricos generales: leyes más técnicas en una comunidad científica determinada, donde un antiguo paradigma es total o en parte reemplazado y se llama revolución científica este proceso y el cambio no es de forma acumulativa, sino paradigmático.

La primera sociología distinguía unos factores internos de la propia ciencia (metodología, objetivos, etc.) que eran independientes de otros factores externos (sociológicos, políticos, etc.) no pertenecientes a la ciencia. Pero una parte de la sociología de la ciencia posterior prescindió de esta distinción. David Bloor (1913) y Barry Barnes son los principales exponentes. Afirman que los científicos son personas que se pueden ver tan afectadas por los factores sociológicos que debemos pensar que todas las creencias son igualmente problemáticas.

Bruno Latour (1947) y Steve Woolgar proponen un concepto antropológico de la ciencia y, por tanto, su estudio por esta disciplina. Junto con las influencias antropológicas, aúnan también corrientes filosóficas como el pragmatismo, para crear algo así como una epistemología alternativa.

Filosofía de la ciencia real

Atendiendo a las críticas de Thomas Kuhn y otros historiadores de que la filosofía de la ciencia con frecuencia se ocupa de problemas artificiosos y alejados de la ciencia real, diversos filósofos de la ciencia contemporáneos han tratado de aproximar sus análisis a la problemática actual de la investigación científica. Ello ha tenido como consecuencia tanto la revitalización de la filosofía general de la ciencia como el desarrollo de varias ramas especializadas de la misma: Filosofía de la física, de la mecánica cuántica, de la cosmología, de la biología, etc.

Ciencia y sociedad

Ciencia y sociedad es un término que hace referencia a los estudios de las implicaciones sociales de la ciencia. Difiere tanto de la epistemología de la ciencia como de la sociología de la ciencia en que no sólo se interesa por el estudio de esta relación desde una perspectiva académica, sino que pugna por la acción directa como postura política, llamando a los científicos y humanistas al compromiso social.

Historia

Russell-Einstein]] que dio lugar a las Conferencias Pugwash en Ciencia y Asuntos Mundiales (Premio Nobel de la Paz en 1995). Este manifiesto fue un llamado a los científicos del mundo para comprometerse en la defensa de la paz, debido a los peligros derivados de la invención de las armas nucleares y la participación de eminentes científicos en el proyecto Manhattan.

Otro momento importante, históricamente hablando, fue la aparición de diversos colectivos de científicos en los años 70's que se opusieron a la intervención estadounidense que dio origen a la Guerra de Vietnam. Un ejemplo fue el llamado colectivo Ciencia para el Pueblo, y otros más que iniciaron el debate sobre las relaciones entre la ciencia, el conocimiento y el poder político. Al igual que en el caso del Proyecto Manhattan, el movimiento Ciencia para el Pueblo y otros científicos individualmente, denunciaron el proyecto Jason.

También durante la llamada Iniciativa de Defensa Estratégica, que el gobierno de Ronald Reagan trató infructuosamente de impulsar, la comunidad de científicos en el mundo alertó sobre sus peligros para la paz mundial. Algo similar sucedió en tiempos del Presidente Bill Clinton cuando un grupo muy importante de científicos ganadores del Premio Nobel hicieron público un comunicado en el que solicitaron que los Estados Unidos no instalaran misiles antibalísticos, por ser un atentado contra la paz mundial.

Actualidad

Actualmente existen colectivos de científicos organizados en torno a problemas ambientales, los alimentos transgénicos, la energía nuclear, la deforestación, el agua, la genética, el racismo, etcétera. Algunos de los científicos y humanistas destacados que han participado de este movimiento son Albert Einstein, Bertrand Russell, Frédéric  Joliot-Curie, Bernard T. Feld, Víctor Weiskopf, Joseph Rotblat, John D. Bernal, Stephen Jay Gould, Richard Lewontin, Ana María Cetto, Luis de la Peña, Germinal Cocho, Steven Rose, Jean-Marc Lévy-Leblond, Pablo González Casanova, Tomás Brody, Noam Chomsky, Richard Dawkins.

Estudios de ciencia, tecnología y sociedad



Los estudios sociales de la ciencia y la tecnología, también denominados estudios sobre ciencia, tecnología y sociedad o estudios de ciencia, tecnología y sociedad (CTS) tratan de cómo los valores sociales, políticos, y culturales afectan a la investigación científica y a la innovación tecnológica, y de cómo éstas, al mismo tiempo, afectan a la sociedad, a la política y a la cultura.

En las regiones de habla hispana han llegado con el nombre común de estudios de/sobre Ciencia Tecnología y Sociedad (CTS) lo que en las regiones de habla inglesa se conoce separadamente como Estudios de Ciencia y Tecnología o Ciencia, Tecnología y Sociedad, ambas con el acrónimo STS. En las regiones de lengua hispana la multidisciplinariedad en CTS incluye desde el principio los ámbitos de las ciencias sociales, fuertemente impulsados por los estudios feministas.

Los estudios CTS son de reciente creación y están en expansión; por ejemplo, en 2005, cuatro universidades importantes de los Estados Unidos anunciaron nuevos programas del CTS. Como la mayoría de los programas interdisciplinarios emergió de la confluencia de una variedad de disciplinas y de sub-campos disciplinarios, que habían desarrollado un interés --típicamente, durante los años 60 o los años 70-- con la perspectiva de que la ciencia y la tecnología están fuertemente interrelacionadas con el desarrollo social.

Desarrollos tempranos

Los componentes disciplinarios dominantes de los estudios CTS fueron tomando forma independientemente, comenzando en los años 60, y se desarrollaron por separado sin tener en cuenta a los demás hasta los años 80, aunque la monografía de Ludwig Fleck (1935)Génesis y desarrollo de un hecho científico anticipó muchos de los temas clave CTS:

v     Estudios de la ciencia, una rama de la sociología del conocimiento científico que estudia las prácticas científicas en su contexto social.
v     Historia de la tecnología, que examina la tecnología en su contexto social e histórico. Comenzó en los años 60 de mano de algunos historiadores que cuestionaban el determinismo tecnológico, una doctrina que puede inducir pasividad pública hacia el "desarrollo natural" de la tecnología y la ciencia. Al mismo tiempo, algunos historiadores comenzaron a desarrollar acercamientos semejantemente en el contexto de la historia de la medicina.
v     Historia y filosofía de la ciencia (años 60). Después de la publicación de Thomas Kuhn La estructura de revoluciones científicas (1962), que atribuyeron cambios en teorías científicas a los cambios en paradigmas intelectuales, los programas fueron fundados en la Universidad de California, Berkeley donde se unieron historiadores de la ciencia y los filósofos en programas unificados.
v     Tecnología y Sociedad en la segunda mitad de los años 60, estudiantes y movimientos sociales de facultades de Estados Unidos, del Reino Unido, y de europeas ayudaron a poner en marcha una gama de nuevos campos interdisciplinarios (por ejemplo Estudios feministas) que fueron vistos como asuntos relevantes que el plan de estudios tradicional no tenía en cuenta. Desde una gran variedad de disciplinas (incluyendo la antropología, la historia, la ciencia política, y la sociología los eruditos en estos programas crearon los planes de estudios dedicados a explorar las cuestiones que surgían a través del análisis crítico de la ciencia y la tecnología. Al revés de lo que ocurría con los eruditos en estudios de la ciencia, historia de la tecnología, o la historia y la filosofía de la ciencia, Los eruditos en Tecnología y Sociedad se veían a sí mismos más como activistas que trabajaban para el cambio algo que investigadores dentro de la desapasionada torre de marfil académica. Como un ejemplo del impulso activista, las eruditas feministas en esta y otras áreas emergentes de CTS se dedicaron al estudio de la exclusión de las mujeres de la ciencia y de la ingeniería.
v     Ciencia, ingeniería, y políticas públicas los estudios emergieron en los años 70 de las mismas preocupaciones que motivaron a los fundadores de los movimientos ciencia, de la tecnología, y del movimiento de la sociedad: Un sentido que la ciencia y la tecnología se convertían de las maneras que eran cada vez más en desacuerdo con los mejores intereses del público. La ciencia, la tecnología, y el movimiento de la sociedad intentado para humanizar a los que harían ciencia y tecnología de mañana, solamente esta disciplina tomaron un diverso acercamiento: Entrenaría a estudiantes con las cualificaciones profesionales necesarias sentir bien a jugadores en la política de ciencia y de tecnología. Algunos programas vinieron acentuar metodologías cuantitativas, y la mayor parte de éstos fueron absorbidos eventual en la ingeniería de sistemas. Otros acentuaron acercamientos sociológicos y cualitativos, y encontraron que sus parentescos más cercanos podrían ser encontrados entre eruditos en ciencia, tecnología, y departamentos de la sociedad.

Durante los años 70 y los años 80, las universidades principales en los E.E.U.U., Reino Unido, y Europa comenzaron a dibujar estos varios componentes juntos en nuevos, interdisciplinarios programas. Por ejemplo, en los años 70, la Universidad Cornell desarrolló un nuevo programa que unió estudios de la ciencia y a eruditos de orientación política con los historiadores y los filósofos de la ciencia y de la tecnología. Cada uno de estos programas desarrolló las identidades únicas debido a la variación en los componentes que fueron dibujados juntos, así como su localización dentro de las varias universidades. Por ejemplo, la universidad de Virginia' el programa de s STS unió a los eruditos extraídos de una variedad de campos; sin embargo, el programa' responsabilidades de enseñanza --está situado dentro de una escuela de ingeniería y enseña a los éticas a los estudiantes de la ingeniería del estudiante-- significa que toda su parte de la facultad un gran interés en dirigir los éticas.

Ciencia política


La ciencia política es una ciencia social que estudia la teoría y práctica de la política, los sistemas y comportamientos políticos. El objetivo de la ciencia política es establecer, a partir de la observación de eventos y situaciones políticas, principios generales acerca del funcionamiento de la política. Se trata de una rama que interactúa con otras muchas de las ciencias sociales, como las políticas públicas, la economía, la sociología, las relaciones internacionales, etc.

Emplea como herramientas metodológicas las propias de las ciencias sociales y entre los diferentes acercamientos posibles están el institucionalismo o la teoría de la elección racional. Entre los principales autores contemporáneos que contribuyeron al desarrollo y consolidación de la ciencia política como disciplina autónoma podemos citar entre los más relevantes a Carl Schmitt, Norberto Bobbio, Leo Strauss, Robert A. Dahl, Gabriel A. Almond, Maurice Duverger, Hannah Arendt, David Easton, Harold D. Lasswell, Samuel P. Huntington, Juan J. Linz, Arend Liphjart, Sydney Verba, Stein Rokkan, Dieter Nohlen, Gianfranco Pasquino, Giovanni Sartori, entre otros.

De acuerdo con Norberto Bobbio en su famoso Diccionario de Política, existen dos acepciones, una en sentido amplio, Ciencias Políticas, y otra en sentido estricto, Ciencia Política. La primera abarcaría todos los estudios relacionados con la política desde la antigüedad hasta nuestros días, incluyendo a todos los filósofos y teóricos que han pensado, escrito y analizado la política, desde Aristóteles, Platón, Cicerón, Maquiavelo, Hobbes, Rousseau, etc. En sentido estricto, es la Ciencia Política contemporánea, la que nació a partir de la corriente comportamentista que trata de observar las actitudes de los políticos y de los ciudadanos bajo premisas estrictamente científicas. En ambas acepciones, la Ciencia Política tiene como objeto de estudio propio al Poder que se ejerce en un colectivo humano. Así, la politología se encarga de analizar las relaciones de poder que se encuentran inmersas en un conjunto social, sean cuales sean sus dimensiones, locales, nacionales, internacionales y a nivel mundial.

El poder, siendo la capacidad de un actor social de influir sobre otros, se encuentra presente en todas las interacciones humanas, lo que supone entonces, la existencia de por lo menos dos entes, es decir, de dos actores que se interrelacionan. Así, el ejercicio del poder lo encontramos consustanciado con la guerra, la paz, la negociación, la concentración, la discordia y concordia; la autoridad, la dominación, la obediencia, la justicia, el orden, el cambio, la revolución, la participación y cualquiera otra situación donde exista el potencial o real encuentro de dos actores sociales con intenciones manifiestas o latentes, de sobreponer sus intereses a los intereses del otro.

Política y ciencia

La ciencia, como actividad que pretende conocer las realidades, se sitúa en un plano intelectual de la naturaleza humana; sin embargo, no puede despojarse de los influjos que las interrelaciones de poder que se producen. Así, el conocimiento se ve muchas veces impulsado o detenido por las decisiones del poder que impera en una determinada sociedad.

Entonces, podrían establecerse múltiples dicotomías: política y arte, política y educación y así sucesivamente, en conclusión no hay actividad humana que sea ajena a la política, ni política que pueda desconocer las diversas actividades de los hombres.

Antecedentes

Durante la Revolución industrial y las revoluciones liberales del siglo XIX, se creó la necesidad de efectuar una crítica social a fin de evaluar los cambios sociales y políticos que sucedían, así como su impacto en la sociedad y los motivos que los habían producido. La preocupación por el cambio social, combinada con el desarrollo que las ciencias naturales estaban logrando gracias al desarrollo del método científico, impulsó la fusión de ambas, dando lugar a las ciencias sociales. Así surgiría la sociología, y más adelante la ciencia política, asociada al estudio de la jurisprudencia y de la filosofía política.

Así pues, la ciencia política es una disciplina relativamente reciente, cuyo nacimiento (al menos en lo que concierne a la ciencia política moderna) algunos sitúan en el siglo XV con Nicolás Maquiavelo (separación de la moral y de la política). Sin embargo, ya en la Antigüedad existen formas de organización política: la polis (donde nació la palabra 'política', y que significa ciudad) en la democracia griega, la Res Publica (cosa pública) que instauró la igualdad en cuanto a los derechos políticos en la Antigua Roma, a excepción de los esclavos. En el Pensamiento chino de Marcel Granet, el arte político databa de las «escuelas confucianas». La administración pública china es la más antigua, comenzando el «mandarinato» en esta época.

El término ciencia política lo acuñó Herbert Baxter Adams, profesor de historia de la Universidad Johns Hopkins en 1880. Aunque su verdadero desarrollo como disciplina científica es posterior a la Segunda Guerra Mundial, antes de dicho periodo se asociaba al estudio de la jurisprudencia y la filosofía política. Otros autores afirman que el término Ciencia Política es propuesto por Paul Janet, quien lo utiliza por primera vez en su obra Historia de la Ciencia Política y sus relaciones con la Moral escrita a mediados del siglo XIX.

Áreas de investigación

Las principales áreas de investigación y análisis de la ciencia política son:

   El poder político y las características de su obtención y su ejercicio.
   La autoridad y su legitimidad.
   El Estado.
   La Administración Pública
   Las políticas públicas.
   El comportamiento político.
   La opinión pública y la comunicación política.
   Las relaciones internacionales. 




CONCLUSION

Resulta innegable que la ciencia y tecnología está llegando a cada individuo en su entorno inmediato, por ello es importante darle un uso moderado, es decir, ya que si bien es cierto que el científico tiene el afán de aumentar los conocimientos de la humanidad, también lo es que dichas innovaciones deben de ser reguladas por la ética, para que cumplan su principal propósito es aumentar la calidad de vida de las personas. Por lo anterior se deduce que la ciencia y la tecnología en sí misma, no es buena ni mala, simplemente depende del manejo que le proporcione el individuo

Para hablar de una filosofía de la ciencia no basta con tener una visión panorámica de lo que es filosofía y de lo que es ciencia. Tampoco es suficiente el seguimiento histórico de las opiniones y conceptos emitidos por los pensadores del pasado. Es necesario ubicarse en el pensamiento actual de los científicos más avanzados y respetar sus conceptos sobre lo que ellos consideran como ciencia, y es necesario entender que el dominio de la filosofía son los conceptos universales y abstractos que nunca pueden llegar a ser objeto de la ciencia.

Es extremadamente complejo presentar un panorama completo de la filosofía de la ciencia, tratamos de presentar un bosquejo de la gran variedad de enfoques actuales pero teniendo en mente que, dentro de pocos años, algunas de las corrientes mencionadas pudieran   ser pasado  y lanzadas al olvido, y que destaquen otros pensadores que hoy tienen una repercusión menor.

Así como anteriormente se podía hablar de "el método" de la ciencia, el gran desarrollo de muchas disciplinas científicas ha hecho que los filósofos de la ciencia comiencen a hablar de "los métodos", ya que no es posible identificar un método único y universalmente válido. La idea heredada de la física clásica de que todo es reducible a expresiones matemáticas ha cedido terreno ante situaciones nuevas como la teoría del caos o los avances de la biología. Por otro lado han desaparecido cuestiones que llegaron a cubrir cientos de páginas y generaron grandes controversias. Quizás el caso más flagrante sea el del problema de la demarcación, centrado en la distinción entre ciencia y otros conocimientos no científicos. Prácticamente el tema desaparece después de Popper y es seguido en España por Gustavo Bueno en su teoría del cierre categorial.

Con este tema damos por terminado nuestro proyecto sobre la Evolución del Hombre, através de las mayores etapas por las que ha pasado, para lograr grandes cambios.







No hay comentarios:

Publicar un comentario